

Duhok Polytechnic University

Zakho Technical Institute
Department of Information

Technology

 Object Oriented Programming

2024-2025

Lecture 4: Classes and Objects

Assistant Lecturer

Sipan M. Hameed

www.sipan.dev

 2

Contents

Object Oriented Programming .. 3

Class and Objects .. 4

Class .. 4

Access modifier ... 5

Creating a class ... 6

Creating an object ... 7

Array of objects ... 11

Practical Examples ... 13

Example-1: .. 13

Example-2: .. 13

Example 3- Create an object .. 14

Example 5- Class Members ... 15

Example 6- Multiple Object ... 16

Example 7 - Use Multiple Classes .. 17

 3

Object Oriented Programming

Object-Oriented Programming (OOP) is a programming paradigm in computer science
that relies on the concept of classes and objects. It is used to structure a software program
into simple, reusable pieces of code blueprints (usually called classes), which are used to
create individual instances of objects.

OOP is widely used in many programming languages, including Java, C++, Python, and
C#. It provides a way to structure and design software in a more modular and maintainable
manner, making it easier to understand, extend, and maintain large codebases.

Procedural programming is about writing procedures or methods that perform operations
on the data, while OOP is about creating objects that contain both data and methods.

OOP has several advantages over procedural programming:

• OOP is faster and easier to execute

• OOP provides a clear structure for the programs

• OOP helps to keep the C# code DRY "Don't Repeat Yourself", and makes the code
easier to maintain, modify and debug

• OOP makes it possible to create full reusable applications with less code and shorter
development time

• Securely protects sensitive information through encapsulation

• And more……

Basic concepts in OOP:

• Abstraction

• Encapsulation

• Inheritance

• Polymorphism

 4

Class and Objects

Classes and objects are the two main aspects of object-oriented programming.
Look at the following illustration to see the difference between class and objects:

So, a class is a template for objects, and an object is an instance of a class. When the
individual objects are created, they inherit all the variables and methods from the class.

Everything in C# is associated with classes and objects, along with its attributes and
methods. For example: in real life, a car is an object. The car has attributes, such as weight
and color, and methods, such as drive and brake.

Class

In C#, a class is a fundamental concept in object-oriented programming (OOP) that serves
as a blueprint for creating objects (instances). It defines the structure and behavior of
objects.

• It is a way of creation user defined data.

• A class is a way to bind the data and its associated function together.

• Also, it allows the data and function to be hidden if necessary.

 5

Access modifier

Class members, which include attributes (fields) and methods, can be specified with
access modifiers, including the public and private keywords, among others. Access
modifiers determine the visibility and accessibility of class members from outside the
class. Here's a more detailed explanation:

1. public: Members declared as public are accessible from any part of the program,
including other classes and assemblies. This means they have the broadest level of
accessibility.

2. private: Members declared as private are only accessible within the class in which
they are defined. They are not accessible from outside the class.

Hint*** the default access modifier for class members, is private. This means that if you
don't explicitly specify an access modifier, the member is considered private by default.

 6

Creating a class

To create a class, use the class keyword:

For example, to create a class 'Person' with its members you can write this statement

This class contains three data members (FirstName, LastName, and age), and one
member method (DisplayInfo).

All members are accessible inside the same class, while for the other classes (outside class
'person’) only public members can be accessed.

 7

Creating an object

Syntax:

Now create an object to from the class 'Person', and try to access all members.

To create an object from the 'Person' class that was defined in the previous example, you
can follow this syntax:

Calling class members

namespace Class_and_Objects
{
 using System;

 class Person
 {
 public string FirstName; // accessable inside and outside the class
 public string LastName; // accessable inside and outside the class
 private int age; // accessable only inside the class
 public void DisplayInfo()
 {
 Console.WriteLine($"Name: {FirstName} {LastName}, Age: {age}");
 }
 }
 class Program
 {
 static void Main()
 {
 // Create a Person object
 Person person1 = new Person();

 // Call the DisplayInfo method to display the information
 person1.DisplayInfo();
 }
 }
}

Creating an instance of the class
Person named person1

 8

Now try to assign values to all data member

To allow age to be accessible, just change the access modifier from private to public.

Error: Inaccessible due to
its protection level (private)

 9

Now create more than one object (person1, person2, and person3) and assign value to
each of them.

 10

 11

Three independent instances were created.

Array of objects

You can create a list of objects in the same way you create an array

person1

• ="Ayad"

• ="Abdulrahman"

• =27

❖

person2

• ="Ahmed"

• ="Ali"

• =25

❖

person3

• ="Zeravan"

• ="Yousif"

• =31

❖

 12

per[0]
• ="Ali"

• ="Kawa"

• =22

❖

per[1]
• ="Ayad"

• ="Abdulrahman"

• =33

❖

per[2]
• ="Rami"

• ="Ahmed"

• =19

❖

 13

Practical Examples

Example-1:

• Define a class named “Student” with the following members:
o Data members (fields):

▪ Full_name
▪ Gender
▪ Address
▪ Age
▪ Marks (three marks)
▪ Average : the value of this variable should be calculated based on student

marks
o Member methods

▪ setInfo: to set the student information (The information should be passed
from Main() method).

▪ displayInfo: to display the student information including Full_Name,
Gender, Address, Age, and Average.

• In the Main() program, create an instance (object) of class Student. Then:
1. Set student information.
2. Print student information.

Example-2:

• Upgrade the previous example (Example-1) by defining another class named
“Employee”, containing the following members:
o Data members (fields):

▪ Full_name
▪ Gender
▪ Address
▪ Age
▪ Salary

o Member methods

▪ setInfo: to set the employee information

▪ displayInfo: to display the employee information including Full_Name,
Gender, Address, Age, and Salary.

• In the Main() program, create an instance (object) of class Employee and then
invoke (call) the two created methods.

 14

Example 3- Create an object

Create an object called "myObj" and use it to print the value of color:

class Car

{

 string color = "red";

 static void Main(string[] args)

 {

 Car myObj = new Car();

 Console.WriteLine(myObj.color);

 }

}

Example 4:- Multiple class

You can create multiple objects of one class:Create two objects of Car:

using System;

namespace app55

{

 class Car

 {

 public string color = "red";

 }

 class Program

 {

 static void Main(string[] args)

 {

 Car myObj = new Car();

 Console.WriteLine(myObj.color);

 Console.ReadKey();

 }

 }

}

 15

Example 5- Class Members

Fields and methods inside classes are often referred to as "Class Members":

using System;

namespace app55

{

 class Car

 {

 string color;

 int maxSpeed;

 static void Main(string[] args)

 {

 Car myObj = new Car();

 myObj.color = "red";

 myObj.maxSpeed = 200;

 Console.WriteLine(myObj.color);

 Console.WriteLine(myObj.maxSpeed);

 Console.ReadKey();

 }

 }

}

Output:

red

200

 16

Example 6- Multiple Object

using System;

namespace app55

{

 class Car

 {

 string model;

 string color;

 int year;

 static void Main(string[] args)

 {

 Car Ford = new Car();

 Ford.model = "Mustang";

 Ford.color = "red";

 Ford.year = 1969;

 Car Opel = new Car();

 Opel.model = "Astra";

 Opel.color = "white";

 Opel.year = 2005;

 Console.WriteLine(Ford.model);

 Console.WriteLine(Opel.model);

 Console.ReadKey();

 }

 }

}

Output

Mustang

Astra

 17

Example 7 - Use Multiple Classes

using System;

namespace app55

{

 class Car

 {

 public string model;

 public string color;

 public int year;
 public void fullThrottle()

 {

 Console.WriteLine("The car is going as fast as it can! - year = {0}",year);

 }

 }

 class Program

 {

 static void Main(string[] args)

 {

 Car Ford = new Car();

 Ford.model = "Mustang";

 Ford.color = "red";

 Ford.year = 1969;

 Car Opel = new Car();

 Opel.model = "Astra";

 Opel.color = "white";

 Opel.year = 2005;

 Console.WriteLine(Ford.model);

 Console.WriteLine(Opel.model);

 Ford.fullThrottle();

 Opel.fullThrottle();

 Console.ReadKey();

 }

 }

}

Output:-

Mustang

Astra

The car is going as fast as it can! - year = 1969

The car is going as fast as it can! - year = 2005

