
1

Zakho Technical Institute

Department of Information Technology

Object Oriented Programming

3. C# Methods (Functions)

Lecturer:

 Sipan M. Hameed

www.sipan.dev

2024 - 2025

file:///D:/Storage%20Box/All%20Course/oop/new-2024/ayad/www.sipan.dev

2

Contents

Method(function) .. 4

Method Declaration and Syntax: .. 4

Method declaration: ... 5

Calling (invoking) the method: .. 5

Methods Parameters .. 7

Multiple parameters ... 8

Default Parameter Value .. 8

Return Values ... 9

Named Arguments.. 11

Example: method overloading .. 12

Passing parameters to methods ... 13

Practical examples: .. 15

mathematical expressions .. 15

Geometry: shapes and solids .. 16

factorial .. 17

Exponents and powers ... 17

Exercise – 1 ... 18

Exercise – 2 - Multiple Parameters .. 19

Exercise – 3 - Default Parameter Value .. 20

Exercise – 4 - Return Values ... 21

3

Exercise – 5 Method Overloading .. 22

Example – 1 - methods (functions) parameter Pass by value 23

Example – 2 - methods (functions) parameter Pass by Reference 24

Example - 3 ... 25

Example - 4 ... 26

Example - 5 ... 27

Example - 6 ... 28

Example - 7 ... 29

Example - 8 ... 30

4

Method(function)

A method is a code block that contains a series of statements to perform a specific

task or operation. It is a fundamental building block of C# programs and is defined

within classes. Generally, C# Methods are useful to improve code reusability by

reducing code duplication. Suppose we have the same functionality to perform in

multiple places, then we can create one method with the required functionality and

use it wherever it is required in the application.

C# provides some pre-defined methods, that you are already familiar with, such as

Main(), but you can also create your own methods to perform certain actions.

To use a method, you need to −
• Define the method

• Call the method

In C#, a method (procedure/function) is declared using the following syntax:

• Access Specifier − Determines the visibility and accessibility of the method
(public, private, protected, internal, etc.). It is useful in class inheritance.

• Return type − A method may return a value: in this case, the method is called
“function”. The return type is the data type of the value the method returns
(such as int, string, char, double, etc.). If the method is not returning any
values, then the return type is void (in this case the method is called
“procedure”).

• Method name − Method name is a unique identifier and it is case sensitive.
It cannot be same as any other identifier declared in the class.

5

• Parameter list – Parameters are variables that you pass to a method when
you call it. They are enclosed within the parentheses in the method
declaration. Parameters are optional (a method may contain no parameters).

• Method body − This contains the set of instructions needed to complete the
required activity.

To call (execute) a method, write the method's followed by two parentheses
 and a semicolon ;

Inside call the method:

Example:

6

The method can be invoked multiple times

7

Information can be passed to methods as a parameter. Parameters act as variables
inside the method.

They are specified after the method name, inside the parentheses. You can add as
many parameters as you want, just separate them with a comma.

The following example has a method that takes a string called fname as parameter.
When the method is called, we pass along a first name, which is used inside the
method to print the full name:

When a parameter is passed to the method, it is called an argument. So, from the

example above: is a parameter, while , and are

arguments.

8

You can have as many parameters as you like, just separate them with commas:

Note that when you are working with multiple parameters, the method call must

have the same number of arguments as there are parameters, and the arguments must

be passed in the same order.

You can also use a default parameter value, by using the equals sign ().

If we call the method without an argument, it uses the default value ("Zeravan"):

9

A parameter with a default value is often known as an "optional parameter". From

the example above, fname is an optional parameter and "Zeravan" is the default

value.

In the previous examples, we used the void keyword in all examples, which
indicates that the method should not return a value.
If you want the method to return a value, you can use a primitive data type (such
as int, double, string, char, or any other datatype) instead of void, and use the
return keyword inside the method:

10

Example: return the summation of the two parameter values received by the

method.

11

It is also possible to send arguments with the key: value syntax.

That way, the order of the arguments does not matter:

Method Overloading

With method overloading, multiple methods can have the same name with different

parameters.

Function overloading allows you to define multiple methods in the same class with

the same name but different parameter lists. The compiler distinguishes between

these methods based on the number or types of parameters, allowing you to provide

multiple implementations of a method with similar functionality.

12

class Program
{
 // Method to add two integers
 public static int Add(int a, int b)
 {
 return a + b;
 }

 // Method to add three integers
 public static int Add(int a, int b, int c)
 {
 return a + b + c;
 }

 // Method to add two doubles
 public static double Add(double a, double b)
 {
 return a + b;
 }
 static void Main()
 {

 int sum1 = Add(5, 10, 15);
 int sum2 = Add(5, 10);

 Console.WriteLine($"Sum 1: {sum1}");
 Console.WriteLine("Sum 2: "+sum2);
 Console.WriteLine("Sum 3: "+ Add(2.5, 3.7));
 }
}

13

There are four different ways of passing parameters to a method in C# which are as:

1. Value

2. Ref (reference)

3. Out (reference)

4. Params (parameter arrays)

1. Passing parameter by value

By default, parameters are passed by value. In this method, a duplicate copy is made

and sent to the called function. There are two copies of the variables. So if you

change the value in the called method it won't be changed in

the calling method.

In the above code, we changed the values of data members a and b but it is not

reflected back in the calling method. As the parameters are default passed by value.

14

2. Passing parameter by ref

Passing parameters by reference means passing a reference of the variable to the

method. So the changes made to the parameters inside the called method will affect

the original data stored in the argument variable. Using the ref keyword, we can

pass parameters reference.

Recursive Method (H.W)

• What is it?

• How does it work?

• Give an example with code.

15

Practical examples:

16

17

The list of factorial values from 1 to 10 are:

n
Factorial of

a Number

n!
Expansion Value

1 1! 1 1

2 2! 2 × 1 2

3 3! 3 × 2 × 1 6

4 4! 4 × 3 × 2 × 1 24

5 5! 5 × 4 × 3 × 2 × 1 120

6 6! 6 × 5 × 4 × 3 × 2 × 1 720

7 7! 7 × 6 × 5 × 4 × 3 × 2 × 1 5,040

8 8! 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 40,320

9 9! 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 362,880

10 10! 10 × 9 ×8 × 7 × 6 × 5 ×4 × 3 × 2 × 1 3,628,800

Factorial of 5 can be calculated as:

5! = 1 × 2 × 3 × 4 × 5

5! = 120

Therefore, the value of factorial of 5 is 120.

22 = 2 raised to power 2 = 2 x 2 = 4

53 = 5 raised to power 3 = 5 x 5 x 5 = 125

18

The following example has a method that takes a string called fname as parameter. When the

method is called, we pass along a first name, which is used inside the method to print the full

name:

Output:

Note:

When a parameter is passed to the method, it is called an argument. So, from the example above:

fname is a parameter, while Liam, Jenny and Anja are arguments.

19

You can have as many parameters as you like, just separate them with commas:

using System;

Output:

20

You can also use a default parameter value, by using the equals sign (=).

Output:

21

If you want the method to return a value, you can use a primitive data type (such as int or double)

instead of void, and use the return keyword inside the method:

Output:

22

Consider the following example, which have two methods that add numbers of different type:

Output :

23

Write a C# Sharp program using methods (functions) to solve the following geometry equations:

Solution:

Output:

24

Write a C# Sharp program using methods (functions) parameter Pass by Reference to solve following

geometry equations:

Solution:

25

Write a C# Sharp program to find factorial of any given number:

factorial = n! = 1 × 2 × 3 × 4 × 5 × ….. × n

solution:

Output:

26

Write a C# Sharp program to find power of any given number using methods (functions):

53 = 5 raised to power 3 = 5 x 5 x 5 = 125

Power = xn = x * x * x * x ….. * x

Solution:

Output:

27

Write a C# Sharp program using methods (functions) to solve following equation: 𝐴(𝑥, 𝑛) = 𝑥1 + 𝑥2 + 𝑥3 + … … … 𝑥𝑛

Solution:

Output:

28

Write a C# Sharp program using methods (functions) to solve following equation: 𝐶(𝑥, 𝑛) = 𝑥11! + 𝑥22! + 𝑥33! + + 𝑥𝑛𝑛!

Solution:

Output:

29

Write a C# Sharp program using methods (functions) to solve following equation: 𝐹(𝑥, 𝑛) = 𝑥11! + 𝑥33! + 𝑥55! + 𝑥77! + 𝑥𝑛𝑛!

Solution:

Example - 4

30

Write a C# Sharp program using methods (functions) to solve following equation: 𝐾(𝑥, 𝑛) = 1!𝑥3 + 2!𝑥6 + 3!𝑥9 + 4!𝑥12 + + 𝑛!𝑥𝑛∗3
Solution;

