

Zakho Technical Institute / IT

Operation System -

Theory

5. Thread in Operating System

Lecturer:

 Sipan M. Hameed

www.sipan.dev

2023-2024

Contents

5. Thread in Operating System .. 1

Overview ... 3

Motivation ... 3

Benefits of multithreaded programming ... 4

Multicore Programming .. 4

Programming Challenges in multicore systems .. 5

Types of Parallelism .. 5

Multithreading Models .. 5

1. Many-to-One Model .. 6

2. One-to-One Model ... 7

3. Many-to-Many Model ... 7

Thread Libraries .. 7

Overview

A thread is a basic unit of CPU utilization; it comprises a thread ID, a program counter (PC), a

register set, and a stack. It shares with other threads belonging to the same process its code

section, data section, and other operating-system resources, such as open files and signals. A

traditional process has a single thread of control. If a process has multiple threads of control, it

can perform more than one task at a time. Figure 4.1 illustrates the difference between a

traditional single-threaded process and a multithreaded process.

Motivation

Most software applications that run on modern computers and mobile devices are

multithreaded. An application typically is implemented as a separate process with several

threads of control. Below we highlight a few examples of multithreaded applications:

• An application that creates photo thumbnails from a collection of images may use a

separate thread to generate a thumbnail from each separate image.

• A web browser might have one thread display images or text while another thread

retrieves data from the network.

• A word processor may have a thread for displaying graphics, another thread for

responding to keystrokes from the user, and a third thread for performing spelling and

grammar checking in the background.

Benefits of multithreaded programming

The benefits of multithreaded programming can be broken down into four

major categories:

1. Responsiveness.

2. Resource sharing.

3. Economy.

4. Scalability.

Multicore Programming

Earlier in the history of computer design, in response to the need for more computing

performance, single-CPU systems evolved into multi-CPU systems. A later, yet similar, trend

in system design is to place multiple computing cores on a single processing chip where each

core appears as a separate CPU to the operating system.

We refer to such systems as multicore, and multithreaded programming provides a mechanism

for more efficient use of these multiple computing cores and improved concurrency. Consider

an application with four threads. On a system with a single computing core, concurrency merely

means that the execution of the threads will be interleaved over time (Figure 4.3), because the

processing core is capable of executing only one thread at a time. On a system with multiple

cores, however, concurrency means that some threads can run in parallel, because the system

can assign a separate thread to each core (Figure 4.4).

Programming Challenges in multicore systems

1. Identifying tasks.

2. Balance.

3. Data splitting.

4. Data dependency.

5. Testing and debugging.

Types of Parallelism

1. Data parallelism

2. Task parallelism

Multithreading Models

Our discussion so far has treated threads in a generic sense. However, support for threads may

be provided either at the user level, for user threads, or by the kernel, for kernel threads. User

threads are supported above the kernel and are managed without kernel support, whereas kernel

threads are supported and managed directly by the operating system. Virtually all contemporary

operating systems—including Windows, Linux, and macOS— support kernel threads.

Ultimately, a relationship must exist between user threads and kernel threads, as illustrated in

Figure 4.6. In this section, we look at three common ways of establishing such a relationship:

the many-to-one model, the one-to-

one model, and the many-to-many model.

1. Many-to-One Model

2. One-to-One Model

3. Many-to-Many Model

Thread Libraries

1. Pthreads

2. Windows Threads

3. Java Threads

