DUHOK POLYTECHNIC UNIVERSITY

Technical College of Zakho
Computer Information Systems

Mobile Application Development I

2. Class and object

Lecturer:
Sipan M. Hameed

www.sipan.dev

2025-2026

file:///D:/All%20Course/Mobile%20App%20Course/flutter/www.sipan.dev

Contents

2. pure Dart classes and Flutter-specific classes (Widgets) 3

2.1, ED Whatis @ Class iN Dart?......cccceeeeeeererceeeeseesesesssssesssssssssssssssssssssns 3
2.2. B Constructors in Dart Classes....ccicvverereereeirecrecrenrecrecreseeseeceessennes 4
2.3. [E) final VS CONSE N ClaSSS ..cecueruereeerreererenesrseeseeeseeesesssesssessseseessesns 5
2.4. [Private Fields & Methods (Encapsulation).........cceceeeeeueereeereeenenes 5
2.5. [Getters and SEErS.....uuivuiveeeireeeeiresreeseesesseessessesssssessessesssenses 6
2.6. 3 INheritance (EXTENAS)......ccoevereereeeeeeereesseeessesseesesssesssesssesseessenes 6
2.7. [ADSEIact ClaSSESeeveeuveeereeeeesereessesessssssssessssesssssesssssssssssssssssssnes 6
2.8. [INtErfaces iN DArtceeeeeeeeveeeeeeeseeeeseeeseeeesseessesssseessesssssessesssssnes 7
2.9. [Static MEMDErS.....eceeeeeeeeeeeeeeeesrereseeesssessssesssssesssssssssssssssssssnnans 7
2.10. [Mixins (Very Important in FIULEEr)cceeeereereeeeeeersersneeseeesssens 8
2.11. D StateleSSWIdZEt ...cuceuereeeeerernrireesessresseeseesessessessesssssessesssesenses 8
2.12.) statefulWidget (VERY IMPORTANT) c...cvoverreeeressesseesseessesssesseesees 9
2.13. [EJ Why Two Classes in StatefulWidget?ooevvveeeererrerseeeneeesseennes 9
2.14. L) Flutter CONStIUCIOr + K@Y ...coveeuereeerreeereeeseresesssesssesseessesssesssessens 10
2.15. EJ Inheritance in Flutter Widgets........veveevevvereesveeressesseessessessessnees 10
2.16. [Abstract Classes in FIULEENc.ceeoveeeceeeseeereresseessesesseessessssessesns 10
2.17. [Lifecycle Methods (StatefulWidget)ccceeveeveeeeereerneseesessnesneas 11

2.pure Dart classes and Flutter-specific classes

(Widgets)
2.1. K} What is a Class in Dart?

A class is a blueprint for creating objects.

It groups data (fields) and behavior (methods) together.

Think:

Class = Design
Object = Real thing created from that design

¢ Basic Dart Class

class Person {
String name;
int age;

void introduce () {
print ('Hi, my name is $name and I am $age years old.');
}
}

e Create an object

volid main () {
Person p = Person();

P.name Sipan';
p.age = 22;

p.introduce() ;

}

< Output:

Hi, my name is Sipan and I am 22 years old.

2.2. 3 Constructors in Dart Classes

o ¢ Default Constructor

class Person {
String name;
int age;

Person (this.name, this.age);
}
void main () {
Person p = Person('Sipan', 22);

}

v this.name automatically assigns values

. ¢ Named Constructors

Used when you want multiple ways to create objects
class Person {

String name;

int age;

Person (this.name, this.age);

Person.child(this.name) : age = 0;
}
volid main () {

Person baby = Person.child('Ali');

}

2.3. E) final vs const in Classes

e ¢ final
Value assigned once, at runtime
e ¢ const

Compile-time constant

class Car {
final String model;
final int year;

Car (this.model, this.year);

}

2.4. 3 Private Fields & Methods (Encapsulation)

In Dart, underscore _ means private to file

class BankAccount {
double balance = 0;

void deposit (double amount) {
_balance += amount;

}

double get balance => balance;
}
volid main () {
var acc = BankAccount () ;
acc.deposit (100);

print (acc.balance); // Vv allowed

// acc. balance X not allowed
}

2.5. B} Getters and Setters

class Temperature {
double celsius = 0;

double get fahrenheit => celsius * 9 / 5 + 32;

set celsius (double wvalue) {
if (value >= -273.15) {
_celsius = value;

}

2.6.) Inheritance (extends)

class Animal {
void sound() {
print ('Animal sound');
}
}

class Dog extends Animal {
@override
void sound() {
print ('Bark');
}
}
volid main () {
Dog d = Dog();
d.sound(); // Bark
}

2.7.EA Abstract Classes

Used when a class must be implemented

abstract class Shape {
double areal();

}

class Circle extends Shape {
double radius;

Circle(this.radius);
@override

double area() => 3.14 * radius * radius;

}

2.8.) Interfaces in Dart

Dart doesn’t have interface keyword.

Every class can be used as an interface using implements.

class Flyable {
void fly() {}
}

class Bird implements Flyable {
@override
void fly () {
print ('Bird is flying');
}

Difference:

e extends — inherit code

e implements — must re-write everything

2.9.[J Static Members

Belong to the class, not object

class MathUtils {
static int add(int a, int b) => a + b;
}
void main () {
print (MathUtils.add (2, 3));
}

2.10. () Mixins (Very Important in Flutter)

Used to reuse behavior without inheritance

mixin Logger {
void log(String msg) {
print ('LOG: Smsg');
}
}

class User with Logger {
void save () {
log ('User saved');
}
}

&5 Now: Flutter Classes (Widgets)
This mixin:

e is not a class

e just contains reusable methods or variables

In Flutter, EVERYTHING IS A CLASS.

2.11. D StatelessWidget

Used when UI does NOT change

class MyText extends StatelessWidget {
const MyText ({super.kevy});

@override
Widget build(BuildContext context) {
return Text ('Hello Flutter');
}
}

Vv No state
Vv Faster

Vv Immutable

2.12. £3 StatefulWidget (VERY IMPORTANT)

Used when UI changes over time

o Step 1: Widget class

class Counter extends StatefulWidget {
const Counter ({super.key}):;

Qoverride
State<Counter> createState() => CounterState();

}

Step 2: State class

class CounterState extends State<Counter> ({
int count = 0;

void increment () {
setState (() {
count++;
1)
}

@override

Widget build(BuildContext context) {
return Column (

children: [
Text ('Count: Scount'),
ElevatedButton (

onPressed: increment,
child: Text ('Add'"),

¢ setState() — tells Flutter rebuild UI

2.13. [E] Why Two Classes in Stateful Widget?
Class Role

StatefulWidget | Configuration

State Mutable data & logic

This separation improves performance.

2.14. 3 Flutter Constructor + Key

class MyButton extends StatelessWidget {
final String title;

const MyButton ({super.key, required this.title});

Qoverride
Widget build(BuildContext context) {
return ElevatedButton (
onPressed: () {},
child: Text(title),
);

2.15. £ Inheritance in Flutter Widgets

class CustomText extends Text {
CustomText (String data)
super (
data,
style: TextStyle(fontSize: 20, color: Colors.blue),
);

2.16. 3 Abstract Classes in Flutter

Example: Repository Pattern

abstract class UserRepository {
Future<String> getUserName () ;
}
class ApiUserRepository implements UserRepository {
@override
Future<String> getUserName () async {
return 'Sipan';

}

10

2.17. E2 Lifecycle Methods (Stateful Widget)

@override
void initState () {
super.initState();

}

Qoverride
void dispose () {
super.dispose() ;

}

Method | When

initState | Once when widget created

build Every Ul update

dispose | Cleanup

Key Takeaways

v Dart classes = logic & data

v Flutter widgets = UI classes

v StatelessWidget — no change

v StatefulWidget — dynamic Ul

v/ mixin, abstract, implements = architecture tools

v Flutter heavily relies on OOP

11

