
1

Technical College of Zakho

Computer Information Systems

Mobile Application Development I

2. Class and object

Lecturer:

 Sipan M. Hameed

www.sipan.dev

2025-2026

file:///D:/All%20Course/Mobile%20App%20Course/flutter/www.sipan.dev

2

Contents

2. pure Dart classes and Flutter-specific classes (Widgets) 3

2.1. What is a Class in Dart? ... 3

2.2. Constructors in Dart Classes .. 4

2.3. final vs const in Classes ... 5

2.4. Private Fields & Methods (Encapsulation) 5

2.5. Getters and Setters ... 6

2.6. Inheritance (extends) .. 6

2.7. Abstract Classes .. 6

2.8. Interfaces in Dart .. 7

2.9. Static Members ... 7

2.10. Mixins (Very Important in Flutter) .. 8

2.11. StatelessWidget .. 8

2.12. StatefulWidget (VERY IMPORTANT) .. 9

2.13. Why Two Classes in StatefulWidget? .. 9

2.14. Flutter Constructor + Key .. 10

2.15. Inheritance in Flutter Widgets ... 10

2.16. Abstract Classes in Flutter ... 10

2.17. Lifecycle Methods (StatefulWidget) .. 11

3

2. pure Dart classes and Flutter-specific classes

(Widgets)

2.1. What is a Class in Dart?

A class is a blueprint for creating objects.

It groups data (fields) and behavior (methods) together.

Think:

Class = Design

Object = Real thing created from that design

 Basic Dart Class

class Person {

 String name;

 int age;

 void introduce() {

 print('Hi, my name is $name and I am $age years old.');

 }

}

• Create an object

void main() {

 Person p = Person();

 p.name = 'Sipan';

 p.age = 22;

 p.introduce();

}

 Output:

Hi, my name is Sipan and I am 22 years old.

4

2.2. Constructors in Dart Classes

• Default Constructor

class Person {

 String name;

 int age;

 Person(this.name, this.age);

}

void main() {

 Person p = Person('Sipan', 22);

}

✔ this.name automatically assigns values

• Named Constructors

Used when you want multiple ways to create objects

class Person {

 String name;

 int age;

 Person(this.name, this.age);

 Person.child(this.name) : age = 0;

}

void main() {

 Person baby = Person.child('Ali');

}

5

2.3. final vs const in Classes

• final

Value assigned once, at runtime

• const

Compile-time constant

class Car {

 final String model;

 final int year;

 Car(this.model, this.year);

}

2.4. Private Fields & Methods (Encapsulation)

In Dart, underscore _ means private to file

class BankAccount {

 double _balance = 0;

 void deposit(double amount) {

 _balance += amount;

 }

 double get balance => _balance;

}

void main() {

 var acc = BankAccount();

 acc.deposit(100);

 print(acc.balance); // ✔ allowed

 // acc._balance not allowed

}

6

2.5. Getters and Setters
class Temperature {

 double _celsius = 0;

 double get fahrenheit => _celsius * 9 / 5 + 32;

 set celsius(double value) {

 if (value >= -273.15) {

 _celsius = value;

 }

 }

}

2.6. Inheritance (extends)
class Animal {

 void sound() {

 print('Animal sound');

 }

}

class Dog extends Animal {

 @override

 void sound() {

 print('Bark');

 }

}

void main() {

 Dog d = Dog();

 d.sound(); // Bark

}

2.7. Abstract Classes

Used when a class must be implemented

abstract class Shape {

 double area();

}

class Circle extends Shape {

 double radius;

 Circle(this.radius);

 @override

 double area() => 3.14 * radius * radius;

}

7

2.8. Interfaces in Dart

Dart doesn’t have interface keyword.

Every class can be used as an interface using implements.

class Flyable {

 void fly() {}

}

class Bird implements Flyable {

 @override

 void fly() {

 print('Bird is flying');

 }

}

 Difference:

• extends → inherit code

• implements → must re-write everything

2.9. Static Members

Belong to the class, not object

class MathUtils {

 static int add(int a, int b) => a + b;

}

void main() {

 print(MathUtils.add(2, 3));

}

8

2.10. Mixins (Very Important in Flutter)

Used to reuse behavior without inheritance

mixin Logger {

 void log(String msg) {

 print('LOG: $msg');

 }

}

class User with Logger {

 void save() {

 log('User saved');

 }

}

 Now: Flutter Classes (Widgets)

This mixin:

• is not a class

• just contains reusable methods or variables

In Flutter, EVERYTHING IS A CLASS.

2.11. StatelessWidget

Used when UI does NOT change

class MyText extends StatelessWidget {

 const MyText({super.key});

 @override

 Widget build(BuildContext context) {

 return Text('Hello Flutter');

 }

}

✔ No state

✔ Faster

✔ Immutable

9

2.12. StatefulWidget (VERY IMPORTANT)

Used when UI changes over time

• Step 1: Widget class

class Counter extends StatefulWidget {

 const Counter({super.key});

 @override

 State<Counter> createState() => _CounterState();

}

Step 2: State class

class _CounterState extends State<Counter> {

 int count = 0;

 void increment() {

 setState(() {

 count++;

 });

 }

 @override

 Widget build(BuildContext context) {

 return Column(

 children: [

 Text('Count: $count'),

 ElevatedButton(

 onPressed: increment,

 child: Text('Add'),

),

],

);

 }

}

 setState() → tells Flutter rebuild UI

2.13. Why Two Classes in StatefulWidget?
Class Role

StatefulWidget Configuration

State Mutable data & logic

This separation improves performance.

10

2.14. Flutter Constructor + Key
class MyButton extends StatelessWidget {

 final String title;

 const MyButton({super.key, required this.title});

 @override

 Widget build(BuildContext context) {

 return ElevatedButton(

 onPressed: () {},

 child: Text(title),

);

 }

}

2.15. Inheritance in Flutter Widgets
class CustomText extends Text {

 CustomText(String data)

 : super(

 data,

 style: TextStyle(fontSize: 20, color: Colors.blue),

);

}

2.16. Abstract Classes in Flutter

Example: Repository Pattern

abstract class UserRepository {

 Future<String> getUserName();

}

class ApiUserRepository implements UserRepository {

 @override

 Future<String> getUserName() async {

 return 'Sipan';

 }

}

11

2.17. Lifecycle Methods (StatefulWidget)
@override

void initState() {

 super.initState();

}

@override

void dispose() {

 super.dispose();

}

Method When

initState Once when widget created

build Every UI update

dispose Cleanup

 Key Takeaways

✔ Dart classes = logic & data

✔ Flutter widgets = UI classes

✔ StatelessWidget → no change

✔ StatefulWidget → dynamic UI

✔ mixin, abstract, implements = architecture tools

✔ Flutter heavily relies on OOP

