
1 

 

Technical College of Zakho 

Computer Information Systems 

Mobile Application Development I 

1.  install and run Dart and Flutter 

 

Lecturer: 

 Sipan M. Hameed 

www.sipan.dev 

2025-2026 

  

file:///D:/All%20Course/Mobile%20App%20Course/flutter/www.sipan.dev


2 

Contents 

Run Dart and Flutter ............................................................ 5 

1.1. Phase 1: Install Dependencies ........................................................... 5 

1.1.1. Install Git: ........................................................................................................... 5 

1.2. Phase 2: Install the Flutter SDK ......................................................... 5 

1.2.1. Download Flutter: .............................................................................................. 5 

1.3. Phase 3: Run Flutter Doctor .............................................................. 6 

1.4. Phase 4: Set up VS Code .................................................................... 6 

1.4.1. Open Visual Studio Code. ................................................................................... 6 

1.5. Phase 5: Create and Run Your First App ............................................ 6 

Android Emulator ................................................................ 8 

1.5.1. Phase 1: Install Android Studio .......................................................................... 8 
1.5.2. Phase 2: Install the "Hidden" Command-Line Tools........................................... 8 
1.5.3. Phase 3: Accept Android Licenses ...................................................................... 8 
1.5.4. Phase 4: Create Your Virtual Phone ................................................................... 9 
1.5.5. Phase 5: Run Your App in VS Code ..................................................................... 9 

Install Flutter manually ..................................................... 11 

1.5.6. Choose your development platform ................................................................ 11 
1.5.7. Download prerequisite software ..................................................................... 11 
1.5.8. Set up an editor or IDE ..................................................................................... 11 
1.5.9. Install and set up Flutter .................................................................................. 11 
1.5.10. Download the Flutter SDK bundle .................................................................... 12 
1.5.11. Note .................................................................................................................. 12 
1.5.12. Extract the SDK ................................................................................................. 12 
1.5.13. Add Flutter to your PATH ................................................................................. 12 
1.5.14. Apply your changes .......................................................................................... 13 
1.5.15. Validate your setup .......................................................................................... 14 

Introduction to Dart .......................................................... 15 

1.6. Hello World ..................................................................................... 15 

1.7. Variables ......................................................................................... 15 

1.8. Numbers ......................................................................................... 16 

1.1. Strings ............................................................................................. 17 

1.1. Lists ................................................................................................ 18 

1.2. Sets ................................................................................................. 18 

1.3. Maps ............................................................................................... 19 

1.4. Records ........................................................................................... 22 

1.4.1. Record syntax ................................................................................................... 22 
1.4.2. Record fields ..................................................................................................... 23 

1.5.    Arithmetic (Math) Operators in Dart ......................................... 24 

1.5.1. Example ............................................................................................................ 24 



3 

1.6.    Relational (Comparison) Operators ........................................... 24 

1.6.1. Example ............................................................................................................ 24 

1.7.    Logical Operators ...................................................................... 25 

1.7.1. Truth Table (Important for exams!) ................................................................. 25 
1.7.2. Example ............................................................................................................ 25 

1.8.    Combined Example (Real-world logic) ....................................... 25 

1.9.    Common Tricky Points     ........................................................ 25 

1.10.    Quick Practice (Try mentally) .................................................... 26 

1.11. if / else conditions in Dart ............................................................... 27 

loops in Dart ...................................................................... 32 

1.12.    for Loop (Classic) ....................................................................... 32 

1.13.    for-in Loop (Collections) ............................................................ 32 

   while Loop .......................................................................................... 33 

1.14.    do–while Loop .......................................................................... 33 

1.15.    break Statement ....................................................................... 33 

1.16.    continue Statement .................................................................. 34 

1.17.    Nested Loops ............................................................................ 34 

1.18.    Loop with Conditions (Common Pattern) .................................. 34 

1.19.    Infinite Loops     ...................................................................... 34 

1.20.     Loop + Functions ....................................................................... 35 

Dart functions ................................................................... 38 

1.20.1.    What is a Function in Dart? ....................................................................... 38 

1.20.2.    Basic Function (No parameters, no return) ............................................... 38 

1.20.3.    Function with Parameters ......................................................................... 38 

1.20.4.    Function with Return Value ....................................................................... 39 

1.20.5.    Arrow (Short) Functions => ........................................................................ 39 

1.20.6.    Optional Positional Parameters [ ] ............................................................ 39 

1.20.7.    Optional Named Parameters { } ................................................................ 40 

1.20.8.    Required Named Parameters .................................................................... 40 

1.20.9.    Default Parameter Values ......................................................................... 40 

1.20.10.     Return Multiple Values (Using Records – Dart 3) .................................. 40 

1.20.11.      Anonymous (Lambda) Functions ...................................................... 41 

1.20.12.      Functions as Parameters (Higher-Order) ......................................... 41 

1.20.13.      Recursive Functions .......................................................................... 41 

1.20.14.      Common Exam Mistakes   ........................................................... 42 

Null Safety. ........................................................................ 43 

1.21. 1. The Philosophy: "Sound" Null Safety ........................................... 43 

1.21.1. 2. The Type System Hierarchy .......................................................................... 43 



4 

1.21.2. A. Non-Nullable (The Default) .......................................................................... 43 
1.21.3. B. Nullable ( The ? Suffix) ................................................................................. 43 

1.22. 3. Deep Dive: Operators and Control Flow ...................................... 44 

1.22.1. A. Flow Analysis & Type Promotion ................................................................. 44 
1.22.2. B. Null-Aware Access (?.) ................................................................................. 44 
1.22.3. C. Null Coalescing (??) ...................................................................................... 44 
1.22.4. D. The Bang Operator (!) .................................................................................. 45 

1.23. 4. The late Keyword ........................................................................ 45 

1.24. 5. Null Safety in Collections ............................................................. 46 

1.25. 6. Constructors and the required Keyword ...................................... 46 

Dart & Flutter I/O .............................................................. 48 

1.26.    What is Input & Output (I/O)? .................................................. 48 

1.27.    Console Output in Dart ............................................................. 48 

 

 

  



5 

Run Dart and Flutter 

To install and run Dart and Flutter on Windows in VS Code, follow this guide. 

Crucial Note: Do not install the Dart SDK separately. The Flutter SDK already includes the 

full Dart SDK. Installing both can cause path conflicts. 

 

1.1. Phase 1: Install Dependencies 

1.1.1. Install Git: 

Flutter relies on Git. If you don't have it, download and install it from git-scm.com. 

o During installation, just click "Next" through all the default options. 

 

1.2. Phase 2: Install the Flutter SDK 

1.2.1. Download Flutter: 

Go to the Flutter Windows Install page and download the stable zip file. 

Extract: 

o Extract the zip file to a clean folder path (e.g., C:\src\flutter). 

o Do not put it in C:\Program Files (this causes permission issues). 

Update your Path (Critical): 

o Press the Windows Key, type env, and select "Edit the system environment 

variables". 

o Click Environment Variables.... 

o Under User variables (top box), find Path and double-click it. 

o Click New and paste the path to the bin folder: 

C:\src\flutter\bin 

o Click OK on all windows. 

https://git-scm.com/download/win
https://docs.flutter.dev/get-started/install/windows


6 

 

1.3. Phase 3: Run Flutter Doctor 

1. Open a new Command Prompt or PowerShell window. 

2. Type the following command and press Enter: 

PowerShell: 

flutter doctor 

o Note: This command checks your system. It is normal to see "X" marks next to 

Android Studio or Visual Studio if you haven't installed them yet. 

o For now, as long as you see a green checkmark next to Flutter, you are ready 

to proceed with VS Code. 

 

1.4. Phase 4: Set up VS Code 

1.4.1. Open Visual Studio Code. 
1.4.1.1. Install the Extension: 

o Click the Extensions icon on the left sidebar (or press Ctrl+Shift+X). 

o Search for "Flutter". 

o Install the official extension by Flutter (this will automatically install the Dart 

extension too). 

 

1.5. Phase 5: Create and Run Your First App 

Now let's create a real Flutter app and run it. The easiest way to test this without installing 

heavy Android tools is to run it as a Windows Desktop App. 

Create the Project: 

o In VS Code, press Ctrl+Shift+P to open the Command Palette. 

o Type Flutter: New Project and select it. 

o Select Application. 



7 

o Choose a folder where you want to save your project. 

o Name your project hello_flutter (lowercase with underscores). 

Select Your Device: 

o Look at the bottom right corner of the VS Code blue status bar. It might say "No 

Device" or "Windows (windows-x64)". 

o Click it and select Windows (desktop) (or Chrome if you prefer running it in 

a browser). 

Run the App: 

o Press F5 on your keyboard (or go to Run > Start Debugging). 

o Wait a moment. The first time you build, it takes a minute or two. 

Success! You should see a window pop up with the standard Flutter counter app. 

 

 

 

 

  



8 

Android Emulator 

let's set up the Android Emulator. This allows you to test your app on a virtual phone running 

on your screen. 

This process involves installing Android Studio (which contains the emulator tools) and then 

connecting it to VS Code. 

1.5.1. Phase 1: Install Android Studio 

Even though you will write code in VS Code, you need Android Studio for its tools. 

1. Download: Go to the Android Studio download page and download the installer. 

2. Install: Run the installer. 

o Make sure "Android Virtual Device" is checked during setup. 

o Click "Next" through all defaults until finished. 

 

1.5.2. Phase 2: Install the "Hidden" Command-Line Tools 

This is the most common step beginners miss, causing flutter doctor errors. 

1. Open Android Studio. 

2. On the Welcome screen, look for a button that says More Actions (usually three dots 

or a dropdown icon) and select SDK Manager. 

o If you don't see the Welcome screen, go to Tools > SDK Manager in the top 

menu. 

3. In the new window, click the SDK Tools tab (in the middle of the window). 

4. Check the box next to Android SDK Command-line Tools (latest). 

5. Click Apply, then OK to install them. 

 

1.5.3. Phase 3: Accept Android Licenses 

Google requires you to legally accept their licenses via the command line. 

https://developer.android.com/studio


9 

1. Close Android Studio. 

2. Open your Command Prompt or PowerShell. 

3. Run this command: 

PowerShell 

flutter doctor --android-licenses 

4. It will ask you to review licenses. Keep typing y and hitting Enter until it says "All 

SDK package licenses accepted." 

 

1.5.4. Phase 4: Create Your Virtual Phone 

1. Open Android Studio again. 

2. Click More Actions > Virtual Device Manager (or Device Manager). 

3. Click Create Device (or the big + button). 

4. Select Hardware: Choose a device like Pixel 5 or Pixel 6. Click Next. 

5. System Image: Click the Download arrow next to a recent Android version (like R or 

S or Tiramisu). 

o Wait for the download to finish. 

6. Select that downloaded system version and click Next. 

7. Click Finish. 

You can now close Android Studio. You won't need to open it again. 

 

1.5.5. Phase 5: Run Your App in VS Code 

1. Open VS Code and your Flutter project. 

2. Look at the bottom right status bar. Click where it says Windows (desktop) or No 

Device. 

3. You should now see your new Android Emulator in the list. Select it. 

o The emulator phone will launch on your screen. Give it a minute to boot up. 

4. Press F5 to run your app. 



10 

Success! Your app should now be running on the virtual Android phone. 

  



11 

Install Flutter manually 

Learn how to install and set up the Flutter SDK manually. 

Learn how to install and manually set up your Flutter development environment.  

Tip 

If you've never set up or developed an app with Flutter before, follow Get started with Flutter 

instead.  

If you're just looking to quickly install Flutter, consider installing Flutter with VS Code for a 

streamlined setup experience.  

1.5.6. Choose your development platform 

The instructions on this page are configured to cover installing Flutter on a Windows device.  

If you'd like to follow the instructions for a different OS, please select one of the following.  

1.5.7. Download prerequisite software 
1.5.7.1. Before installing the Flutter SDK, first complete the following setup.  

Install Git for Windows 

Download and install the latest version of Git for Windows. 

For help installing or troubleshooting Git, reference the Git documentation. 

1.5.8. Set up an editor or IDE 

For the best experience developing Flutter apps, consider installing and setting up an editor or 

IDE with Flutter support. 

1.5.9. Install and set up Flutter 

To install the Flutter SDK, download the latest bundle from the SDK archive, then extract the 

SDK to where you want it stored.  

https://docs.flutter.dev/get-started
https://docs.flutter.dev/install/with-vs-code
https://git-scm.com/downloads/win
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.flutter.dev/tools/editors
https://docs.flutter.dev/tools/editors


12 

1.5.10. Download the Flutter SDK bundle 

Download the following installation bundle to get the latest stable release of the Flutter SDK. 

Create a folder to store the SDK 

Create or find a folder to store the extracted SDK in. Consider creating and using a directory 

at (C:\src\flutter). 

1.5.11. Note 

Select a location that doesn't have special characters or spaces in its path and doesn't require 

elevated privileges. 

1.5.12. Extract the SDK 

Extract the SDK bundle you downloaded into the directory you want to store the Flutter SDK 

in. 

C:\src\flutter 

1.5.13. Add Flutter to your PATH 

Now that you've downloaded the SDK, add the Flutter SDK's bin directory to your PATH 

environment variable. Adding Flutter to your PATH allows you to use the flutter and dart 

command-line tools in terminals and IDEs.  

Determine your Flutter SDK installation location 

1. C:\src\flutter\bin 

Copy the absolute path to the directory that you downloaded and extracted the Flutter SDK 

into. 

Navigate to the environment variables settings 

1. Press Windows + Pause. 

If your keyboard lacks a Pause key, try Windows + Fn + B. 

The System > About dialog opens. 



13 

Click Advanced System Settings > Advanced > Environment Variables.... 

The Environment Variables dialog opens. 

2. Add the Flutter SDK bin to your path 

1. In the User variables for (username) section of the Environment Variables 

dialog, look for the Path entry. 

2. If the Path entry exists, double-click it. 

The Edit Environment Variable dialog should open. 

a. Double-click inside an empty row. 

b. Type the path to the bin directory of your Flutter installation. 

For example, if you downloaded Flutter into a develop\flutter folder inside your user directory, 

you'd type the following: 

C:\src\flutter 

c. Click the Flutter entry you added to select it. 

d. Click Move Up until the Flutter entry sits at the top of the list. 

e. To confirm your changes, click OK three times. 

3. If the entry doesn't exist, click New.... 

The Edit Environment Variable dialog should open. 

a. In the Variable Name box, type Path. 

b. In the Variable Value box, type the path to the bin directory of your 

Flutter installation. 

For example, if you downloaded Flutter into a develop\flutter folder inside your user directory, 

you'd type the following: 

C:\src\flutter 

c. To confirm your changes, click OK three times. 

1.5.14. Apply your changes 



14 

To apply this change and get access to the flutter tool, close and reopen all open command 

prompts, sessions in your terminal apps, and IDEs. 

1.5.15. Validate your setup 

To ensure you successfully added the SDK to your PATH, open command prompt or your 

preferred terminal app, then try running the flutter and dart tools. 

flutter –version 

 

dart --version 

If either command isn't found, check out Flutter installation troubleshooting. 

  

https://docs.flutter.dev/install/troubleshoot


15 

Introduction to Dart 

1.6. Hello World 

Every app requires the top-level main() function, where execution starts. Functions that don't 

explicitly return a value have the void return type. To display text on the console, you can 

use the top-level print() function:  

void main() { 

  print('Hello, World!'); 

} 

Read more about the main() function in Dart, including optional parameters for command-

line arguments.  

1.7. Variables 

Even in type-safe Dart code, you can declare most variables without explicitly specifying their 

type using var. Thanks to type inference, these variables' types are determined by their initial 

values:  

var name = 'Voyager I'; 

var year = 1977; 

var antennaDiameter = 3.7; 

var flybyObjects = ['Jupiter', 'Saturn', 'Uranus', 'Neptune']; 

var image = { 

  'tags': ['saturn'], 

  'url': '//path/to/saturn.jpg', 

}; 

 

Built-in types 

Information on the types Dart supports. 

The Dart language has special support for the following: 

• Numbers (int, double) 

• Strings (String) 

• Booleans (bool) 

• Records ((value1, value2)) 

• Functions (Function) 

• Lists (List, also known as arrays) 

https://dart.dev/language/functions#the-main-function
https://dart.dev/language/type-system
https://dart.dev/language/built-in-types#numbers
https://dart.dev/language/built-in-types#strings
https://dart.dev/language/built-in-types#booleans
https://dart.dev/language/records
https://dart.dev/language/functions#function-types
https://dart.dev/language/collections#lists


16 

• Sets (Set) 

• Maps (Map) 

• Runes (Runes; often replaced by the characters API)  

• Symbols (Symbol) 

• The value null (Null) 

 

1.8. Numbers 

Dart numbers come in two flavors: 

int 

Integer values no larger than 64 bits, depending on the platform. On native platforms, 

values can be from -263 to 263 - 1. On the web, integer values are represented as 

JavaScript numbers (64-bit floating-point values with no fractional part) and can be 

from -253 to 253 - 1.  

double 

64-bit (double-precision) floating-point numbers, as specified by the IEEE 754 

standard.  

Both int and double are subtypes of num. The num type includes basic operators such as +, -

, /, and *, and is also where you'll find abs(), ceil(), and floor(), among other methods. 

(Bitwise operators, such as >>, are defined in the int class.) If num and its subtypes don't 

have what you're looking for, the dart:math library might.  

Integers are numbers without a decimal point. Here are some examples of defining integer 

literals:  

var x = 1; 

var hex = 0xDEADBEEF; 

If a number includes a decimal, it is a double. Here are some examples of defining double 

literals:  

var y = 1.1; 

var exponents = 1.42e5; 

You can also declare a variable as a num. If you do this, the variable can have both integer 

and double values.  

 

 

https://dart.dev/language/collections#sets
https://dart.dev/language/collections#maps
https://dart.dev/language/built-in-types#runes-and-grapheme-clusters
https://dart.dev/language/built-in-types#symbols
https://api.dart.dev/dart-core/int-class.html
https://dart.dev/resources/language/number-representation
https://api.dart.dev/dart-core/double-class.html
https://api.dart.dev/dart-core/num-class.html
https://api.dart.dev/dart-math/dart-math-library.html


17 

num x = 1; // x can have both int and double values 

x += 2.5; 

Integer literals are automatically converted to doubles when necessary: 

double z = 1; // Equivalent to double z = 1.0. 

 

1.1. Strings 

A Dart string (String object) holds a sequence of UTF-16 code units. You can use either 

single or double quotes to create a string:  

var s1 = 'Single quotes work well for string literals.'; 

var s2 = "Double quotes work just as well."; 

var s3 = 'It\'s easy to escape the string delimiter.'; 

var s4 = "It's even easier to use the other delimiter."; 

You can put the value of an expression inside a string by using ${expression}. If the 

expression is an identifier, you can skip the {}. To get the string corresponding to an object, 

Dart calls the object's toString() method.  

Constant 

// These work in a const string. 

const aConstNum = 0; 

const aConstBool = true; 

const aConstString = 'a constant string'; 

 

// These do NOT work in a const string. 

var aNum = 0; 

var aBool = true; 

var aString = 'a string'; 

const aConstList = [1, 2, 3]; 

 

  



18 

1.1. Lists 

Perhaps the most common collection in nearly every programming language is the array, or 

ordered group of objects. In Dart, arrays are List objects, so most people just call them lists.  

Dart list literals are denoted by a comma-separated list of elements enclosed in square brackets 

([]). Each element is usually an expression. Here's a simple Dart list:  

var list = [1, 2, 3]; 

Note 

Dart infers that list has type List<int>. If you try to add non-integer objects to this list, the 

analyzer or runtime raises an error. For more information, read about type inference.  

You can add a comma after the last item in a Dart collection literal. This trailing comma doesn't 

affect the collection, but it can help prevent copy-paste errors.  

var list = ['Car', 'Boat', 'Plane']; 

Lists use zero-based indexing, where 0 is the index of the first element and list.length - 

1 is the index of the last element. You can get a list's length using the .length property and 

access a list's elements using the subscript operator ([]):  

var list = [1, 2, 3]; 

assert(list.length == 3); 

assert(list[1] == 2); 

 

list[1] = 1; 

assert(list[1] == 1); 

To create a list that's a compile-time constant, add const before the list literal:  

var constantList = const [1, 2, 3]; 

// constantList[1] = 1; // This line will cause an error. 

For more information about lists, refer to the Lists section of the dart:core documentation.  

1.2. Sets 

A set in Dart is an unordered collection of unique elements. Dart support for sets is provided 

by set literals and the Set type.  

Here is a simple Dart set, created using a set literal: 

var halogens = {'fluorine', 'chlorine', 'bromine', 'iodine', 'astatine'}; 

https://api.dart.dev/dart-core/List-class.html
https://dart.dev/language/type-system#type-inference
https://dart.dev/libraries/dart-core#lists
https://api.dart.dev/dart-core/Set-class.html


19 

Note 

Dart infers that halogens has the type Set<String>. If you try to add the wrong type of 

element to the set, the analyzer or runtime raises an error. For more information, read about 

type inference.  

To create an empty set, use {} preceded by a type argument, or assign {} to a variable of type 

Set:  

var names = <String>{}; 

// Set<String> names = {}; // This works, too. 

// var names = {}; // Creates a map, not a set. 

Set or map? 

The syntax for map literals is similar to that for set literals. Because map literals came first, 

{} defaults to the Map type. If you forget the type annotation on {} or the variable it's 

assigned to, then Dart creates an object of type Map<dynamic, dynamic>.  

Add items to an existing set using the add() or addAll() methods: 

var elements = <String>{}; 

elements.add('fluorine'); 

elements.addAll(halogens); 

Use .length to get the number of items in the set: 

var elements = <String>{}; 

elements.add('fluorine'); 

elements.addAll(halogens); 

assert(elements.length == 5); 

To create a set that's a compile-time constant, add const before the set literal:  

final constantSet = const { 

  'fluorine', 

  'chlorine', 

  'bromine', 

  'iodine', 

  'astatine', 

}; 

// constantSet.add('helium'); // This line will cause an error. 

For more information about sets, refer to the Sets section of the dart:core documentation.  

1.3. Maps 

In a map, each element is a key-value pair. Each key within a pair is associated with a value, 

and both keys and values can be any type of object. Each key can occur only once, although 

the same value can be associated with multiple different keys. Dart support for maps is 

provided by map literals and the Map type.  

https://dart.dev/language/type-system#type-inference
https://dart.dev/libraries/dart-core#sets
https://api.dart.dev/dart-core/Map-class.html


20 

Here are a couple of simple Dart maps, created using map literals: 

var gifts = { 

  // Key:    Value 

  'first': 'partridge', 

  'second': 'turtledoves', 

  'fifth': 'golden rings', 

}; 

 

var nobleGases = {2: 'helium', 10: 'neon', 18: 'argon'}; 

Note 

Dart infers that gifts has the type Map<String, String> and nobleGases has the type 

Map<int, String>. If you try to add the wrong type of value to either map, the analyzer or 

runtime raises an error. For more information, read about type inference.  

You can create the same objects using a Map constructor: 

var gifts = Map<String, String>(); 

gifts['first'] = 'partridge'; 

gifts['second'] = 'turtledoves'; 

gifts['fifth'] = 'golden rings'; 

 

var nobleGases = Map<int, String>(); 

nobleGases[2] = 'helium'; 

nobleGases[10] = 'neon'; 

nobleGases[18] = 'argon'; 

Note 

If you come from a language like C# or Java, you might expect to see new Map() instead of 

just Map(). In Dart, the new keyword is optional. For details, see Using constructors.  

Add a new key-value pair to an existing map using the subscript assignment operator ([]=):  

var gifts = {'first': 'partridge'}; 

gifts['fourth'] = 'calling birds'; // Add a key-value pair 

Retrieve a value from a map using the subscript operator ([]): 

var gifts = {'first': 'partridge'}; 

assert(gifts['first'] == 'partridge'); 

If you look for a key that isn't in a map, you get null in return: 

var gifts = {'first': 'partridge'}; 

assert(gifts['fifth'] == null); 

Use .length to get the number of key-value pairs in the map: 

var gifts = {'first': 'partridge'}; 

https://dart.dev/language/type-system#type-inference
https://dart.dev/language/classes#using-constructors


21 

gifts['fourth'] = 'calling birds'; 

assert(gifts.length == 2); 

To create a map that's a compile-time constant, add const before the map literal:  

final constantMap = const {2: 'helium', 10: 'neon', 18: 'argon'}; 

 

// constantMap[2] = 'Helium'; // This line will cause an error. 

 

 
  



22 

1.4. Records 

Records are an anonymous, immutable, aggregate type. Like other collection types, they let 

you bundle multiple objects into a single object. Unlike other collection types, records are 

fixed-sized, heterogeneous, and typed.  

Records are real values; you can store them in variables, nest them, pass them to and from 

functions, and store them in data structures such as lists, maps, and sets.  

1.4.1. Record syntax 

Records expressions are comma-delimited lists of named or positional fields, enclosed in 

parentheses:  

var record = ('first', a: 2, b: true, 'last'); 

Record type annotations are comma-delimited lists of types enclosed in parentheses. You can 

use record type annotations to define return types and parameter types. For example, the 

following (int, int) statements are record type annotations:  

(int, int) swap((int, int) record) { 

  var (a, b) = record; 

  return (b, a); 

} 

Fields in record expressions and type annotations mirror how parameters and arguments work 

in functions. Positional fields go directly inside the parentheses:  

// Record type annotation in a variable declaration: 

(String, int) record; 

 

// Initialize it with a record expression: 

record = ('A string', 123); 

In a record type annotation, named fields go inside a curly brace-delimited section of type-

and-name pairs, after all positional fields. In a record expression, the names go before each 

field value with a colon after:  

// Record type annotation in a variable declaration: 

({int a, bool b}) record; 

 

// Initialize it with a record expression: 

record = (a: 123, b: true); 

The names of named fields in a record type are part of the record's type definition, or its 

shape. Two records with named fields with different names have different types:  

({int a, int b}) recordAB = (a: 1, b: 2); 

({int x, int y}) recordXY = (x: 3, y: 4); 

 

// Compile error! These records don't have the same type. 

// recordAB = recordXY; 

https://dart.dev/language/collections
https://dart.dev/language/functions#parameters
https://dart.dev/language/records#record-types


23 

In a record type annotation, you can also name the positional fields, but these names are 

purely for documentation and don't affect the record's type:  

(int a, int b) recordAB = (1, 2); 

(int x, int y) recordXY = (3, 4); 

 

recordAB = recordXY; // OK. 

This is similar to how positional parameters in a function declaration or function typedef can 

have names but those names don't affect the signature of the function.  

For more information and examples, check out Record types and Record equality.  

 

1.4.2. Record fields 

Record fields are accessible through built-in getters. Records are immutable, so fields do not 

have setters.  

Named fields expose getters of the same name. Positional fields expose getters of the name 

$<position>, skipping named fields:  

var record = ('first', a: 2, b: true, 'last'); 

 

print(record.$1); // Prints 'first' 

print(record.a); // Prints 2 

print(record.b); // Prints true 

print(record.$2); // Prints 'last' 

 

 

  

https://dart.dev/language/functions#function-types
https://dart.dev/language/records#record-types
https://dart.dev/language/records#record-equality


24 

1.5.    Arithmetic (Math) Operators in Dart 
Operator Meaning Example Result 
+ Addition 5 + 2 7 

- Subtraction 5 - 2 3 

* Multiplication 5 * 2 10 

/ Division (double) 5 / 2 2.5 

~/ Integer division 5 ~/ 2 2 

% Modulus (remainder) 5 % 2 1 

++ Increment a++ adds 1 
-- Decrement a-- subtracts 1 

1.5.1. Example 

void main() { 

  int a = 10; 

  int b = 3; 

 

  print(a + b);   // 13 

  print(a / b);   // 3.3333 

  print(a ~/ b);  // 3 

  print(a % b);   // 1 

} 

 

1.6.    Relational (Comparison) Operators 

These always return bool (true or false). 

Operator Meaning Example Result 
== Equal to 5 == 5 true 

!= Not equal 5 != 3 true 

> Greater than 5 > 3 true 

< Less than 5 < 3 false 

>= Greater or equal 5 >= 5 true 

<= Less or equal 3 <= 5 true 

1.6.1. Example 

void main() { 

  int x = 10; 

  int y = 20; 

 

  print(x > y);    // false 

  print(x <= y);   // true 

  print(x == y);   // false 

} 

  



25 

1.7.    Logical Operators 

Used to combine conditions. 

Operator Meaning Example 
&& AND a > 5 && b < 10 

|| OR a > 5 || b < 10 

! NOT !isLoggedIn 

1.7.1. Truth Table (Important for exams!) 

| A | B | A && B | A || B | 

|--|--|-------|-------| 

| true | true | true | true | 

| true | false | false | true | 

| false | true | false | true | 

| false | false | false | false | 

1.7.2. Example 

void main() { 

  int age = 20; 

  bool hasID = true; 

 

  print(age >= 18 && hasID); // true 

  print(age < 18 || hasID);  // true 

  print(!hasID);             // false 

} 

 

1.8.    Combined Example (Real-world logic) 
void main() { 

  int score = 75; 

 

  if (score >= 50 && score <= 100) { 

    print("Passed"); 

  } else { 

    print("Failed"); 

  } 

} 

 

1.9.    Common Tricky Points     

  == vs = 

a == b   // comparison 

a = b    // assignment   (very common mistake) 



26 

  / vs ~/ 

print(5 / 2);   // 2.5 (double) 

print(5 ~/ 2);  // 2   (int) 

  Short-circuit logic 

false && expensiveFunction(); // function NOT called 

true || expensiveFunction();  // function NOT called 

 

1.10.    Quick Practice (Try mentally) 

   What is the output? 

print(10 > 5 && 3 < 1); 

   What is printed? 

int x = 7; 

print(x % 2 == 0); 

   What type is the result? 

var r = 5 / 2; 

 

 

  



27 

1.11.  if / else conditions in Dart  

 

   Basic if Statement 

Executes code only if the condition is true. 

void main() { 

  int age = 20; 

 

  if (age >= 18) { 

    print("Adult"); 

  } 

} 

     Condition must be bool (no 0/1 like C). 

 

   if – else 

Two paths: true or false 

void main() { 

  int marks = 45; 

 

  if (marks >= 50) { 

    print("Pass"); 

  } else { 

    print("Fail"); 

  } 

} 

 

  



28 

   if – else if – else (Multiple Conditions) 

Checked top → bottom (first true block runs). 

void main() { 

  int score = 82; 

 

  if (score >= 90) { 

    print("A"); 

  } else if (score >= 75) { 

    print("B"); 

  } else if (score >= 50) { 

    print("C"); 

  } else { 

    print("F"); 

  } 

} 

    Order matters! 

 

   Nested if Statements 

if inside another if. 

void main() { 

  int age = 22; 

  bool hasID = true; 

 

  if (age >= 18) { 

    if (hasID) { 

      print("Allowed"); 

    } else { 

      print("ID required"); 

    } 

  } else { 

    print("Underage"); 

  } 

} 

 

   Logical Conditions in if 

• AND (&&) 

if (age >= 18 && hasID) { 

  print("Access granted"); 

} 



29 

• OR (||) 

if (age < 12 || age > 60) { 

  print("Discount"); 

} 

• NOT (!) 

if (!isLoggedIn) { 

  print("Please log in"); 

} 

 

   if with Comparison Operators 

int x = 10; 

 

if (x == 10) { 

  print("Equal"); 

} 

 

if (x != 5) { 

  print("Not five"); 

} 

 

   Ternary Operator (condition ? expr1 : expr2) 

Short if–else expression. 

int age = 16; 

 

String result = age >= 18 ? "Adult" : "Minor"; 

print(result); 

     Must return a value. 

 

 

 

 



30 

   if as an Expression (Dart-style) 

String grade; 

int marks = 70; 

 

grade = marks >= 50 ? "Pass" : "Fail"; 

 

   Common Mistakes   (Exam Traps) 

•   Using = instead of == 

if (a = 5) {}   // ERROR 

•   Non-boolean condition 

if (1) {}       // ERROR 

•   Missing braces (logic bug) 

if (x > 0) 

  print("Positive"); 

  print("Always runs"); //   

  Correct: 

if (x > 0) { 

  print("Positive"); 

} 

 

    Real-World Example (Complete) 

void main() { 

  int balance = 500; 

  int withdraw = 300; 

 

  if (withdraw <= balance) { 

    balance -= withdraw; 

    print("Withdraw successful"); 

  } else { 

    print("Insufficient balance"); 

  } 

} 



31 

      Practice (Try before scrolling) 

• Q1 

int x = 15; 

 

if (x % 3 == 0 && x % 5 == 0) { 

  print("FizzBuzz"); 

} else if (x % 3 == 0) { 

  print("Fizz"); 

} else if (x % 5 == 0) { 

  print("Buzz"); 

} 

• Q2 

What is printed? 

int a = 5; 

 

if (a > 10) { 

  print("A"); 

} else if (a > 3) { 

  print("B"); 

} else { 

  print("C"); 

} 

 

 

  



32 

loops in Dart 

1.12.    for Loop (Classic) 

Use when the number of iterations is known. 

void main() { 

  for (int i = 1; i <= 5; i++) { 

    print(i); 

  } 

} 

     i is block-scoped. 

 

1.13.    for-in Loop (Collections) 

Best for iterating over lists, sets, maps. 

void main() { 

  var numbers = [10, 20, 30]; 

 

  for (var n in numbers) { 

    print(n); 

  } 

} 

• With Map 

void main() { 

  var ages = {'Ali': 20, 'Sara': 22}; 

 

  for (var entry in ages.entries) { 

    print('${entry.key}: ${entry.value}'); 

  } 

} 

 

 

  



33 

   while Loop 

Use when condition-based repetition is needed. 

void main() { 

  int i = 1; 

 

  while (i <= 5) { 

    print(i); 

    i++; 

  } 

} 

    Don’t forget to update the condition variable! 

 

1.14.    do–while Loop 

Runs at least once, even if condition is false. 

void main() { 

  int i = 10; 

 

  do { 

    print(i); 

    i++; 

  } while (i < 5); 

} 

✔ Output: 10 

 

1.15.    break Statement 

Stops the loop immediately. 

void main() { 

  for (int i = 1; i <= 10; i++) { 

    if (i == 5) break; 

    print(i); 

  } 

} 

 



34 

1.16.    continue Statement 

Skips current iteration. 

void main() { 

  for (int i = 1; i <= 5; i++) { 

    if (i == 3) continue; 

    print(i); 

  } 

} 

✔ Output: 1 2 4 5 

 

1.17.    Nested Loops 

Loop inside another loop. 

void main() { 

  for (int i = 1; i <= 3; i++) { 

    for (int j = 1; j <= 3; j++) { 

      print('$i $j'); 

    } 

  } 

} 

 

1.18.    Loop with Conditions (Common Pattern) 
void main() { 

  for (int i = 1; i <= 20; i++) { 

    if (i % 2 == 0) { 

      print('$i is even'); 

    } 

  } 

} 

 

1.19.    Infinite Loops     

•   Mistake 

while (true) { 

  print("Hello"); 

} 



35 

•    Controlled Infinite Loop 

while (true) { 

  if (conditionMet) break; 

} 

 

1.20.     Loop + Functions 
void printTable(int n) { 

  for (int i = 1; i <= 10; i++) { 

    print('$n x $i = ${n * i}'); 

  } 

} 

 

 

     forEach() Loop (Functional Style) 

void main() { 

  var nums = [1, 2, 3]; 

 

  nums.forEach((n) { 

    print(n * n); 

  }); 

} 

    Cannot use break or continue here! 

 

     Common Exam Traps   

•   Modifying list during loop 

for (var n in nums) { 

  nums.add(n); // Runtime error 

} 

•   Wrong condition 

for (int i = 0; i <= list.length; i++) {} // ERROR 

✔ Correct: 



36 

i < list.length 

 

      Practice Exercises (Exam Style) 

• Exercise 1 

Print numbers from 10 to 1 using a loop. 

• Exercise 2 

Print all prime numbers between 1 and 50. 

• Exercise 3 

Use nested loops to print: 

* 

** 

*** 

**** 

• Exercise 4 (Tricky) 

What is the output? 

int i = 0; 

while (i < 3) { 

  print(i); 

  i++; 

} 

 

  



37 

    Loop Comparison Table 

Loop Best For 

for Known iteration count 

for-in Collections 

while Unknown iteration 

do-while Run at least once 

forEach Functional style 

 

  



38 

Dart functions  

1.20.1.    What is a Function in Dart? 

A function is a reusable block of code that: 

• may take parameters 

• may return a value 

returnType functionName(parameters) { 

  // body 

} 

 

1.20.2.    Basic Function (No parameters, no return) 

void greet() { 

  print("Hello Dart"); 

} 

 

void main() { 

  greet(); 

} 

     void → returns nothing. 

 

1.20.3.    Function with Parameters 

void printSum(int a, int b) { 

  print(a + b); 

} 

 

void main() { 

  printSum(3, 4); 

} 

 

  



39 

1.20.4.    Function with Return Value 

int add(int a, int b) { 

  return a + b; 

} 

 

void main() { 

  int result = add(5, 6); 

  print(result); 

} 

 

1.20.5.    Arrow (Short) Functions => 

For single-expression functions. 

int square(int x) => x * x; 

 

void main() { 

  print(square(4)); // 16 

} 

 

1.20.6.    Optional Positional Parameters [ ] 

Parameters that may be omitted. 

void showInfo(String name, [int? age]) { 

  print("Name: $name"); 

  print("Age: ${age ?? 'Not provided'}"); 

} 

 

void main() { 

  showInfo("Ali"); 

  showInfo("Ali", 20); 

} 

     Optional params must be nullable or have defaults. 

 

  



40 

1.20.7.    Optional Named Parameters { } 

Very common in Dart & Flutter. 

void registerUser({String? name, int? age}) { 

  print("Name: $name, Age: $age"); 

} 

 

void main() { 

  registerUser(name: "Sara", age: 22); 

} 

 

1.20.8.    Required Named Parameters 

void login({required String username, required String password}) { 

  print("User: $username"); 

} 

 

void main() { 

  login(username: "admin", password: "1234"); 

} 

 

1.20.9.    Default Parameter Values 

void greet(String name, {String country = "Iraq"}) { 

  print("Hello $name from $country"); 

} 

 

void main() { 

  greet("Sipan"); 

  greet("Sipan", country: "Turkey"); 

} 

 

1.20.10.     Return Multiple Values (Using Records – Dart 3) 

(int, int) minMax(int a, int b) { 

  return (a < b ? a : b, a > b ? a : b); 

} 

 

void main() { 

  var (min, max) = minMax(3, 7); 

  print("Min: $min, Max: $max"); 

} 

  



41 

1.20.11.      Anonymous (Lambda) Functions 

Functions without names. 

void main() { 

  var add = (int a, int b) { 

    return a + b; 

  }; 

 

  print(add(3, 4)); 

} 

Arrow lambda: 

var multiply = (int a, int b) => a * b; 

 

1.20.12.      Functions as Parameters (Higher-Order) 

void calculate(int a, int b, int Function(int, int) operation) { 

  print(operation(a, b)); 

} 

 

void main() { 

  calculate(5, 3, (x, y) => x + y); 

  calculate(5, 3, (x, y) => x * y); 

} 

 

1.20.13.      Recursive Functions 

Function calling itself. 

int factorial(int n) { 

  if (n == 0) return 1; 

  return n * factorial(n - 1); 

} 

 

void main() { 

  print(factorial(5)); // 120 

} 

 

  



42 

1.20.14.      Common Exam Mistakes   

•   Missing return 

int sum(int a, int b) { 

  a + b; // ERROR 

} 

  Correct: 

return a + b; 

 

•   Wrong parameter order 

login("admin", password: "123"); // ERROR 

 

      Practice Exercises (Try!) 

• Exercise 1 

Write a function that returns the largest of 3 numbers. 

• Exercise 2 

Write a function that checks whether a number is prime. 

• Exercise 3 

Convert this function to an arrow function: 

int cube(int x) { 

  return x * x * x; 

} 

 

  



43 

Null Safety. 

1.21. 1. The Philosophy: "Sound" Null Safety 

Before Null Safety (Dart 2.12), any variable could be null. You wouldn't know if a variable 

was missing a value until you tried to use it and the app crashed with a NoSuchMethodError 

(the Dart equivalent of a Null Pointer Exception). 

Dart's system is Sound. This means the compiler guarantees that if a variable is typed as non-

nullable (e.g., String), it cannot contain null at runtime. The compiler catches these errors 

before you even run the app. 

1.21.1. 2. The Type System Hierarchy 

In the old system, Null was a subtype of every object. In the new system, the type hierarchy is 

split. 

1.21.2. A. Non-Nullable (The Default) 

Variables are non-nullable by default. You must initialize them, and they can never become 

null. 

Dart 

int score = 0; //    OK 

score = null;  //   Compile-time Error 

1.21.3. B. Nullable ( The ? Suffix) 

To allow a variable to hold "no value," you must explicitly mark the type with a question mark. 

Dart 

int? score;   //    OK: Defaults to null 

score = 10;   //    OK 

score = null; //    OK 

 

 



44 

1.22. 3. Deep Dive: Operators and Control Flow 

Null safety introduces several operators to handle the boundary between "value exists" and 

"value is missing." 

1.22.1. A. Flow Analysis & Type Promotion 

Dart is intelligent enough to read your code. If you check for null, Dart "promotes" the variable 

from Nullable to Non-Nullable inside that scope. 

Dart 

void checkMessage(String? message) { 

  // At this line, 'message' is String? (could be null) 

   

  if (message != null) { 

    // INSIDE this block, Dart treats 'message' as String (non-nullable). 

    // You can safely access properties. 

    print(message.length);  

  } 

} 

1.22.2. B. Null-Aware Access (?.) 

This operator is used to access properties or methods on a nullable object. If the object is null, 

the expression short-circuits and returns null immediately, rather than crashing. 

Dart 

String? name; 

// 1. name is null. 

// 2. ?. sees null and stops. 

// 3. length is never called. 

// 4. variable 'len' becomes null. 

int? len = name?.length;  

1.22.3. C. Null Coalescing (??) 

This is the "fallback" operator. It says: "Use the value on the left. If it is null, use the value on 

the right." 

Dart 

String? userInput; 

// If userInput is null, 'displayName' becomes "Anonymous" 

String displayName = userInput ?? "Anonymous"; 



45 

1.22.4. D. The Bang Operator (!) 

This casts a nullable type to a non-nullable type. It is essentially telling the compiler: "I 

promise this is not null right now." 

Use with caution: If you are wrong, this throws a runtime exception. 

Dart 

String? name = "Dart"; 

// We force Dart to treat 'name' as a String. 

String strictName = name!;  

 

1.23. 4. The late Keyword 

The late modifier is a specific tool for two scenarios where you can't initialize a variable 

immediately, but you don't want it to be nullable. 

1.23.1.1. Scenario 1: Deferred Initialization 

Common in Flutter StatefulWidgets. You can't initialize things in the variable declaration 

because context or this aren't available yet. 

Dart 

class MyPage extends StatefulWidget { 

  @override 

  _MyPageState createState() => _MyPageState(); 

} 

 

class _MyPageState extends State<MyPage> { 

  // We can't set this here because 'this' doesn't exist yet. 

  // But we promise to set it in initState. 

  late ScrollController _scroller;  

 

  @override 

  void initState() { 

    super.initState(); 

    _scroller = ScrollController(); // Promise fulfilled. 

  } 

} 



46 

1.23.1.2. Scenario 2: Lazy Initialization 

If you mark a variable as late and assign it immediately, the code runs lazily (only the first time 

the variable is used). This is useful for expensive computations. 

Dart 

// The function _heavyComputation() is NOT called yet. 

late String data = _heavyComputation();  

 

1.24. 5. Null Safety in Collections 

Null safety gets tricky with Lists and Maps because the "null-ness" can apply to the list itself 

or the items inside it. 

Type Declaration Description 

List<String> A list exists, and every item inside MUST be a string. 

List<String?> A list exists, but items inside CAN be null. 

List<String>? 
The list itself might be null (doesn't exist), but if it does, items are 

strings. 

List<String?>? The list might be null, and items inside might be null. 

Example: 

Dart 

List<String?> foods = ['Pizza', null, 'Burger']; // Valid 

List<String> drinks = ['Coke', null]; //   Error: List cannot contain nulls 

 

1.25. 6. Constructors and the required Keyword 

In classes, all non-nullable variables must be initialized before the constructor body runs. For 

named parameters, we use required. 

Dart 



47 

class User { 

  String name; // Non-nullable 

  int? age;    // Nullable 

 

  // 1. 'name' is marked required because it cannot be null. 

  // 2. 'age' is optional; if omitted, it stays null. 

  User({required this.name, this.age}); 

} 

 

void main() { 

  //   Error: Missing 'name' 

  // User u = User(age: 20);  

 

  //    Correct 

  User u = User(name: "Alice", age: 20); 

} 

 

1. Summary Checklist for Developers 

2. Variable Declaration: Ask "Can this ever inherently be empty?" If yes, use ?. If no, 

don't. 

3. API Data: Data from the internet (JSON) should almost always be nullable because 

servers can fail or send missing fields. 

4. UI Rendering: Use ?? to ensure your text widgets never try to display null (e.g., 

Text(name ?? '')). 

5. State Management: Use late for controllers and animations that are set up in initState. 

6. Next Step 

 

 

 

 

  



48 

Dart & Flutter I/O  

 

1.26.    What is Input & Output (I/O)? 

I/O = Input & Output 

• Input → data coming into the program 

• Output → data going out of the program 

Examples: 

• Keyboard input 

• Console output 

• File read/write 

• Network (API) 

• User typing in a Flutter TextField 

 

PART A — DART I/O (Console & File) 

1.27.    Console Output in Dart 

•   print() 

void main() { 

  print('Hello Dart'); 

  print(10 + 20); 

} 

✔ Automatically adds a new line 

✔ Debugging & output 

 

•   stdout.write() (no new line) 



49 

import 'dart:io'; 

 

void main() { 

  stdout.write('Enter your name: '); 

} 

 

•    Console Input in Dart 

•   Read from keyboard 

import 'dart:io'; 

 

void main() { 

  stdout.write('Enter your name: '); 

  String? name = stdin.readLineSync(); 

 

  print('Hello $name'); 

} 

     readLineSync() returns String? (nullable) 

 

•   Parsing Input (int / double) 

stdout.write('Enter age: '); 

int age = int.parse(stdin.readLineSync()!); 

⚠ Danger: crash if input is not a number 

 

•   Safe Parsing 

String? input = stdin.readLineSync(); 

int? age = int.tryParse(input ?? ''); 

 

if (age == null) { 

  print('Invalid number'); 

} else { 

  print('Age = $age'); 

} 

 


