
1

Technical College of Zakho

Computer Information Systems

Mobile Application Development I

1. install and run Dart and Flutter

Lecturer:

 Sipan M. Hameed

www.sipan.dev

2025-2026

file:///D:/All%20Course/Mobile%20App%20Course/flutter/www.sipan.dev

2

Contents

Run Dart and Flutter .. 4

1.1. Phase 1: Install Dependencies ... 4

1.1.1. Install Git: ... 4

1.2. Phase 2: Install the Flutter SDK ... 4

1.2.1. Download Flutter: .. 4

1.3. Phase 3: Run Flutter Doctor .. 5

1.4. Phase 4: Set up VS Code .. 5

1.4.1. Open Visual Studio Code. ... 5

1.5. Phase 5: Create and Run Your First App .. 5

Android Emulator .. 7

1.5.1. Phase 1: Install Android Studio .. 7
1.5.2. Phase 2: Install the "Hidden" Command-Line Tools... 7
1.5.3. Phase 3: Accept Android Licenses .. 7
1.5.4. Phase 4: Create Your Virtual Phone ... 8
1.5.5. Phase 5: Run Your App in VS Code ... 8

Install Flutter manually ... 10

1.5.6. Choose your development platform .. 10
1.5.7. Download prerequisite software ... 10
1.5.8. Set up an editor or IDE ... 10
1.5.9. Install and set up Flutter .. 10
1.5.10. Download the Flutter SDK bundle .. 11
1.5.11. Note .. 11
1.5.12. Extract the SDK ... 11
1.5.13. Add Flutter to your PATH ... 11
1.5.14. Apply your changes .. 12
1.5.15. Validate your setup .. 13
1.5.16. Continue your Flutter journey .. 13

Introduction to Dart .. 14

1.6. Hello World ... 14

1.7. Variables ... 14

1.8. Numbers ... 15

1.1. Strings ... 16

1.2. Records ... 16

1.2.1. Record syntax ... 16
1.2.2. Record fields ... 18
1.2.3. Record types ... 18
1.2.4. Record equality .. 18
1.2.5. Multiple returns ... 19
1.2.6. Records as simple data structures ... 20

1.3. Arithmetic (Math) Operators in Dart ... 21

3

1.3.1. Example .. 21

1.4. Relational (Comparison) Operators ... 21

1.4.1. Example .. 21

1.5. Logical Operators .. 22

1.5.1. Truth Table (Important for exams!) ... 22
1.5.2. Example .. 22

1.6. Combined Example (Real-world logic) 22

1.7. Common Tricky Points .. 22

1.8. Quick Practice (Try mentally) .. 23

1.9. if / else conditions in Dart ... 24

Dart functions ... 29

4

Run Dart and Flutter

To install and run Dart and Flutter on Windows in VS Code, follow this guide.

Crucial Note: Do not install the Dart SDK separately. The Flutter SDK already includes the

full Dart SDK. Installing both can cause path conflicts.

1.1. Phase 1: Install Dependencies

1.1.1. Install Git:

Flutter relies on Git. If you don't have it, download and install it from git-scm.com.

o During installation, just click "Next" through all the default options.

1.2. Phase 2: Install the Flutter SDK

1.2.1. Download Flutter:

Go to the Flutter Windows Install page and download the stable zip file.

Extract:

o Extract the zip file to a clean folder path (e.g., C:\src\flutter).

o Do not put it in C:\Program Files (this causes permission issues).

Update your Path (Critical):

o Press the Windows Key, type env, and select "Edit the system environment

variables".

o Click Environment Variables....

o Under User variables (top box), find Path and double-click it.

o Click New and paste the path to the bin folder:

C:\src\flutter\bin

o Click OK on all windows.

https://git-scm.com/download/win
https://docs.flutter.dev/get-started/install/windows

5

1.3. Phase 3: Run Flutter Doctor

1. Open a new Command Prompt or PowerShell window.

2. Type the following command and press Enter:

PowerShell:

flutter doctor

o Note: This command checks your system. It is normal to see "X" marks next to

Android Studio or Visual Studio if you haven't installed them yet.

o For now, as long as you see a green checkmark next to Flutter, you are ready

to proceed with VS Code.

1.4. Phase 4: Set up VS Code

1.4.1. Open Visual Studio Code.
1.4.1.1. Install the Extension:

o Click the Extensions icon on the left sidebar (or press Ctrl+Shift+X).

o Search for "Flutter".

o Install the official extension by Flutter (this will automatically install the Dart

extension too).

1.5. Phase 5: Create and Run Your First App

Now let's create a real Flutter app and run it. The easiest way to test this without installing

heavy Android tools is to run it as a Windows Desktop App.

Create the Project:

o In VS Code, press Ctrl+Shift+P to open the Command Palette.

o Type Flutter: New Project and select it.

o Select Application.

6

o Choose a folder where you want to save your project.

o Name your project hello_flutter (lowercase with underscores).

Select Your Device:

o Look at the bottom right corner of the VS Code blue status bar. It might say "No

Device" or "Windows (windows-x64)".

o Click it and select Windows (desktop) (or Chrome if you prefer running it in

a browser).

Run the App:

o Press F5 on your keyboard (or go to Run > Start Debugging).

o Wait a moment. The first time you build, it takes a minute or two.

Success! You should see a window pop up with the standard Flutter counter app.

7

Android Emulator

let's set up the Android Emulator. This allows you to test your app on a virtual phone running

on your screen.

This process involves installing Android Studio (which contains the emulator tools) and then

connecting it to VS Code.

1.5.1. Phase 1: Install Android Studio

Even though you will write code in VS Code, you need Android Studio for its tools.

1. Download: Go to the Android Studio download page and download the installer.

2. Install: Run the installer.

o Make sure "Android Virtual Device" is checked during setup.

o Click "Next" through all defaults until finished.

1.5.2. Phase 2: Install the "Hidden" Command-Line Tools

This is the most common step beginners miss, causing flutter doctor errors.

1. Open Android Studio.

2. On the Welcome screen, look for a button that says More Actions (usually three dots

or a dropdown icon) and select SDK Manager.

o If you don't see the Welcome screen, go to Tools > SDK Manager in the top

menu.

3. In the new window, click the SDK Tools tab (in the middle of the window).

4. Check the box next to Android SDK Command-line Tools (latest).

5. Click Apply, then OK to install them.

1.5.3. Phase 3: Accept Android Licenses

Google requires you to legally accept their licenses via the command line.

https://developer.android.com/studio

8

1. Close Android Studio.

2. Open your Command Prompt or PowerShell.

3. Run this command:

PowerShell

flutter doctor --android-licenses

4. It will ask you to review licenses. Keep typing y and hitting Enter until it says "All

SDK package licenses accepted."

1.5.4. Phase 4: Create Your Virtual Phone

1. Open Android Studio again.

2. Click More Actions > Virtual Device Manager (or Device Manager).

3. Click Create Device (or the big + button).

4. Select Hardware: Choose a device like Pixel 5 or Pixel 6. Click Next.

5. System Image: Click the Download arrow next to a recent Android version (like R or

S or Tiramisu).

o Wait for the download to finish.

6. Select that downloaded system version and click Next.

7. Click Finish.

You can now close Android Studio. You won't need to open it again.

1.5.5. Phase 5: Run Your App in VS Code

1. Open VS Code and your Flutter project.

2. Look at the bottom right status bar. Click where it says Windows (desktop) or No

Device.

3. You should now see your new Android Emulator in the list. Select it.

o The emulator phone will launch on your screen. Give it a minute to boot up.

4. Press F5 to run your app.

9

Success! Your app should now be running on the virtual Android phone.

10

Install Flutter manually

Learn how to install and set up the Flutter SDK manually.

Learn how to install and manually set up your Flutter development environment.

Tip

If you've never set up or developed an app with Flutter before, follow Get started with Flutter

instead.

If you're just looking to quickly install Flutter, consider installing Flutter with VS Code for a

streamlined setup experience.

1.5.6. Choose your development platform

The instructions on this page are configured to cover installing Flutter on a Windows device.

If you'd like to follow the instructions for a different OS, please select one of the following.

1.5.7. Download prerequisite software
1.5.7.1. Before installing the Flutter SDK, first complete the following setup.

Install Git for Windows

Download and install the latest version of Git for Windows.

For help installing or troubleshooting Git, reference the Git documentation.

1.5.8. Set up an editor or IDE

For the best experience developing Flutter apps, consider installing and setting up an editor or

IDE with Flutter support.

1.5.9. Install and set up Flutter

To install the Flutter SDK, download the latest bundle from the SDK archive, then extract the

SDK to where you want it stored.

https://docs.flutter.dev/get-started
https://docs.flutter.dev/install/with-vs-code
https://git-scm.com/downloads/win
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.flutter.dev/tools/editors
https://docs.flutter.dev/tools/editors

11

1.5.10. Download the Flutter SDK bundle

Download the following installation bundle to get the latest stable release of the Flutter SDK.

Create a folder to store the SDK

Create or find a folder to store the extracted SDK in. Consider creating and using a directory

at (C:\src\flutter).

1.5.11. Note

Select a location that doesn't have special characters or spaces in its path and doesn't require

elevated privileges.

1.5.12. Extract the SDK

Extract the SDK bundle you downloaded into the directory you want to store the Flutter SDK

in.

C:\src\flutter

1.5.13. Add Flutter to your PATH

Now that you've downloaded the SDK, add the Flutter SDK's bin directory to your PATH

environment variable. Adding Flutter to your PATH allows you to use the flutter and dart

command-line tools in terminals and IDEs.

Determine your Flutter SDK installation location

1. C:\src\flutter\bin

Copy the absolute path to the directory that you downloaded and extracted the Flutter SDK

into.

Navigate to the environment variables settings

1. Press Windows + Pause.

If your keyboard lacks a Pause key, try Windows + Fn + B.

The System > About dialog opens.

12

Click Advanced System Settings > Advanced > Environment Variables....

The Environment Variables dialog opens.

2. Add the Flutter SDK bin to your path

1. In the User variables for (username) section of the Environment Variables

dialog, look for the Path entry.

2. If the Path entry exists, double-click it.

The Edit Environment Variable dialog should open.

a. Double-click inside an empty row.

b. Type the path to the bin directory of your Flutter installation.

For example, if you downloaded Flutter into a develop\flutter folder inside your user directory,

you'd type the following:

C:\src\flutter

c. Click the Flutter entry you added to select it.

d. Click Move Up until the Flutter entry sits at the top of the list.

e. To confirm your changes, click OK three times.

3. If the entry doesn't exist, click New....

The Edit Environment Variable dialog should open.

a. In the Variable Name box, type Path.

b. In the Variable Value box, type the path to the bin directory of your

Flutter installation.

For example, if you downloaded Flutter into a develop\flutter folder inside your user directory,

you'd type the following:

C:\src\flutter

c. To confirm your changes, click OK three times.

1.5.14. Apply your changes

13

To apply this change and get access to the flutter tool, close and reopen all open command

prompts, sessions in your terminal apps, and IDEs.

1.5.15. Validate your setup

To ensure you successfully added the SDK to your PATH, open command prompt or your

preferred terminal app, then try running the flutter and dart tools.

flutter –version

dart --version

If either command isn't found, check out Flutter installation troubleshooting.

1.5.16. Continue your Flutter journey

Now that you've successfully installed Flutter, set up development for at least one target

platform to continue your journey with Flutter.

https://docs.flutter.dev/install/troubleshoot

14

Introduction to Dart

1.6. Hello World

Every app requires the top-level main() function, where execution starts. Functions that don't

explicitly return a value have the void return type. To display text on the console, you can

use the top-level print() function:

void main() {

 print('Hello, World!');

}

Read more about the main() function in Dart, including optional parameters for command-

line arguments.

1.7. Variables

Even in type-safe Dart code, you can declare most variables without explicitly specifying their

type using var. Thanks to type inference, these variables' types are determined by their initial

values:

var name = 'Voyager I';

var year = 1977;

var antennaDiameter = 3.7;

var flybyObjects = ['Jupiter', 'Saturn', 'Uranus', 'Neptune'];

var image = {

 'tags': ['saturn'],

 'url': '//path/to/saturn.jpg',

};

Built-in types

Information on the types Dart supports.

The Dart language has special support for the following:

• Numbers (int, double)

• Strings (String)

• Booleans (bool)

• Records ((value1, value2))

• Functions (Function)

• Lists (List, also known as arrays)

https://dart.dev/language/functions#the-main-function
https://dart.dev/language/type-system
https://dart.dev/language/built-in-types#numbers
https://dart.dev/language/built-in-types#strings
https://dart.dev/language/built-in-types#booleans
https://dart.dev/language/records
https://dart.dev/language/functions#function-types
https://dart.dev/language/collections#lists

15

• Sets (Set)

• Maps (Map)

• Runes (Runes; often replaced by the characters API)

• Symbols (Symbol)

• The value null (Null)

1.8. Numbers

Dart numbers come in two flavors:

int

Integer values no larger than 64 bits, depending on the platform. On native platforms,

values can be from -263 to 263 - 1. On the web, integer values are represented as

JavaScript numbers (64-bit floating-point values with no fractional part) and can be

from -253 to 253 - 1.

double

64-bit (double-precision) floating-point numbers, as specified by the IEEE 754

standard.

Both int and double are subtypes of num. The num type includes basic operators such as +, -

, /, and *, and is also where you'll find abs(), ceil(), and floor(), among other methods.

(Bitwise operators, such as >>, are defined in the int class.) If num and its subtypes don't

have what you're looking for, the dart:math library might.

Integers are numbers without a decimal point. Here are some examples of defining integer

literals:

var x = 1;

var hex = 0xDEADBEEF;

If a number includes a decimal, it is a double. Here are some examples of defining double

literals:

var y = 1.1;

var exponents = 1.42e5;

You can also declare a variable as a num. If you do this, the variable can have both integer

and double values.

num x = 1; // x can have both int and double values

https://dart.dev/language/collections#sets
https://dart.dev/language/collections#maps
https://dart.dev/language/built-in-types#runes-and-grapheme-clusters
https://dart.dev/language/built-in-types#symbols
https://api.dart.dev/dart-core/int-class.html
https://dart.dev/resources/language/number-representation
https://api.dart.dev/dart-core/double-class.html
https://api.dart.dev/dart-core/num-class.html
https://api.dart.dev/dart-math/dart-math-library.html

16

x += 2.5;

Integer literals are automatically converted to doubles when necessary:

double z = 1; // Equivalent to double z = 1.0.

1.1. Strings

A Dart string (String object) holds a sequence of UTF-16 code units. You can use either

single or double quotes to create a string:

var s1 = 'Single quotes work well for string literals.';

var s2 = "Double quotes work just as well.";

var s3 = 'It\'s easy to escape the string delimiter.';

var s4 = "It's even easier to use the other delimiter.";

You can put the value of an expression inside a string by using ${expression}. If the

expression is an identifier, you can skip the {}. To get the string corresponding to an object,

Dart calls the object's toString() method.

Constant

// These work in a const string.

const aConstNum = 0;

const aConstBool = true;

const aConstString = 'a constant string';

// These do NOT work in a const string.

var aNum = 0;

var aBool = true;

var aString = 'a string';

const aConstList = [1, 2, 3];

1.2. Records

Records are an anonymous, immutable, aggregate type. Like other collection types, they let

you bundle multiple objects into a single object. Unlike other collection types, records are

fixed-sized, heterogeneous, and typed.

Records are real values; you can store them in variables, nest them, pass them to and from

functions, and store them in data structures such as lists, maps, and sets.

1.2.1. Record syntax

Records expressions are comma-delimited lists of named or positional fields, enclosed in

parentheses:

https://dart.dev/language/collections

17

var record = ('first', a: 2, b: true, 'last');

Record type annotations are comma-delimited lists of types enclosed in parentheses. You can

use record type annotations to define return types and parameter types. For example, the

following (int, int) statements are record type annotations:

(int, int) swap((int, int) record) {

 var (a, b) = record;

 return (b, a);

}

Fields in record expressions and type annotations mirror how parameters and arguments work

in functions. Positional fields go directly inside the parentheses:

// Record type annotation in a variable declaration:

(String, int) record;

// Initialize it with a record expression:

record = ('A string', 123);

In a record type annotation, named fields go inside a curly brace-delimited section of type-

and-name pairs, after all positional fields. In a record expression, the names go before each

field value with a colon after:

// Record type annotation in a variable declaration:

({int a, bool b}) record;

// Initialize it with a record expression:

record = (a: 123, b: true);

The names of named fields in a record type are part of the record's type definition, or its

shape. Two records with named fields with different names have different types:

({int a, int b}) recordAB = (a: 1, b: 2);

({int x, int y}) recordXY = (x: 3, y: 4);

// Compile error! These records don't have the same type.

// recordAB = recordXY;

In a record type annotation, you can also name the positional fields, but these names are

purely for documentation and don't affect the record's type:

(int a, int b) recordAB = (1, 2);

(int x, int y) recordXY = (3, 4);

recordAB = recordXY; // OK.

This is similar to how positional parameters in a function declaration or function typedef can

have names but those names don't affect the signature of the function.

For more information and examples, check out Record types and Record equality.

https://dart.dev/language/functions#parameters
https://dart.dev/language/records#record-types
https://dart.dev/language/functions#function-types
https://dart.dev/language/records#record-types
https://dart.dev/language/records#record-equality

18

1.2.2. Record fields

Record fields are accessible through built-in getters. Records are immutable, so fields do not

have setters.

Named fields expose getters of the same name. Positional fields expose getters of the name

$<position>, skipping named fields:

var record = ('first', a: 2, b: true, 'last');

print(record.$1); // Prints 'first'

print(record.a); // Prints 2

print(record.b); // Prints true

print(record.$2); // Prints 'last'

To streamline record field access even more, check out the page on Patterns.

1.2.3. Record types

There is no type declaration for individual record types. Records are structurally typed based

on the types of their fields. A record's shape (the set of its fields, the fields' types, and their

names, if any) uniquely determines the type of a record.

Each field in a record has its own type. Field types can differ within the same record. The

type system is aware of each field's type wherever it is accessed from the record:

(num, Object) pair = (42, 'a');

var first = pair.$1; // Static type `num`, runtime type `int`.

var second = pair.$2; // Static type `Object`, runtime type `String`.

Consider two unrelated libraries that create records with the same set of fields. The type

system understands that those records are the same type even though the libraries are not

coupled to each other.

Tip

While you can't declare a unique type for a record shape, you can create type aliases for

readability and reuse. To learn how and when to do so, check out Records and typedefs.

1.2.4. Record equality

Two records are equal if they have the same shape (set of fields), and their corresponding

fields have the same values. Since named field order is not part of a record's shape, the order

of named fields does not affect equality.

For example:

(int x, int y, int z) point = (1, 2, 3);

(int r, int g, int b) color = (1, 2, 3);

https://dart.dev/language/patterns#destructuring-multiple-returns
https://dart.dev/language/records#records-and-typedefs

19

print(point == color); // Prints 'true'.

({int x, int y, int z}) point = (x: 1, y: 2, z: 3);

({int r, int g, int b}) color = (r: 1, g: 2, b: 3);

print(point == color); // Prints 'false'. Lint: Equals on unrelated types.

Records automatically define hashCode and == methods based on the structure of their fields.

1.2.5. Multiple returns

Records allow functions to return multiple values bundled together. To retrieve record values

from a return, destructure the values into local variables using pattern matching.

// Returns multiple values in a record:

(String name, int age) userInfo(Map<String, dynamic> json) {

 return (json['name'] as String, json['age'] as int);

}

final json = <String, dynamic>{'name': 'Dash', 'age': 10, 'color': 'blue'};

// Destructures using a record pattern with positional fields:

var (name, age) = userInfo(json);

/* Equivalent to:

 var info = userInfo(json);

 var name = info.$1;

 var age = info.$2;

*/

You can also destructure a record using its named fields, using the colon :

syntax, which you can read more about on the Pattern types page:

({String name, int age}) userInfo(Map<String, dynamic> json)

// ···

// Destructures using a record pattern with named fields:

final (:name, :age) = userInfo(json);

You can return multiple values from a function without records, but other methods come with

downsides. For example, creating a class is much more verbose, and using other collection

types like List or Map loses type safety.

Note

Records' multiple-return and heterogeneous-type characteristics enable parallelization of

futures of different types, which you can read about in the dart:async documentation.

https://dart.dev/language/patterns#destructuring
https://dart.dev/language/patterns#destructuring-multiple-returns
https://dart.dev/language/records#record-fields
https://dart.dev/language/pattern-types#record
https://dart.dev/libraries/dart-async#handling-errors-for-multiple-futures

20

1.2.6. Records as simple data structures

Records only hold data. When that's all you need, they're immediately available and easy to

use without needing to declare any new classes. For a simple list of data tuples that all have

the same shape, a list of records is the most direct representation.

Take this list of "button definitions", for example:

final buttons = [

 (

 label: "Button I",

 icon: const Icon(Icons.upload_file),

 onPressed: () => print("Action -> Button I"),

),

 (

 label: "Button II",

 icon: const Icon(Icons.info),

 onPressed: () => print("Action -> Button II"),

)

];

This code can be written directly without needing any additional declarations.

21

1.3. Arithmetic (Math) Operators in Dart
Operator Meaning Example Result
+ Addition 5 + 2 7

- Subtraction 5 - 2 3

* Multiplication 5 * 2 10

/ Division (double) 5 / 2 2.5

~/ Integer division 5 ~/ 2 2

% Modulus (remainder) 5 % 2 1

++ Increment a++ adds 1
-- Decrement a-- subtracts 1

1.3.1. Example

void main() {

 int a = 10;

 int b = 3;

 print(a + b); // 13

 print(a / b); // 3.3333

 print(a ~/ b); // 3

 print(a % b); // 1

}

1.4. Relational (Comparison) Operators

These always return bool (true or false).

Operator Meaning Example Result
== Equal to 5 == 5 true

!= Not equal 5 != 3 true

> Greater than 5 > 3 true

< Less than 5 < 3 false

>= Greater or equal 5 >= 5 true

<= Less or equal 3 <= 5 true

1.4.1. Example

void main() {

 int x = 10;

 int y = 20;

 print(x > y); // false

 print(x <= y); // true

 print(x == y); // false

}

22

1.5. Logical Operators

Used to combine conditions.

Operator Meaning Example
&& AND a > 5 && b < 10

|| OR a > 5 || b < 10

! NOT !isLoggedIn

1.5.1. Truth Table (Important for exams!)

| A | B | A && B | A || B |

|--|--|-------|-------|

| true | true | true | true |

| true | false | false | true |

| false | true | false | true |

| false | false | false | false |

1.5.2. Example

void main() {

 int age = 20;

 bool hasID = true;

 print(age >= 18 && hasID); // true

 print(age < 18 || hasID); // true

 print(!hasID); // false

}

1.6. Combined Example (Real-world logic)
void main() {

 int score = 75;

 if (score >= 50 && score <= 100) {

 print("Passed");

 } else {

 print("Failed");

 }

}

1.7. Common Tricky Points

 == vs =

a == b // comparison

a = b // assignment (very common mistake)

23

 / vs ~/

print(5 / 2); // 2.5 (double)

print(5 ~/ 2); // 2 (int)

 Short-circuit logic

false && expensiveFunction(); // function NOT called

true || expensiveFunction(); // function NOT called

1.8. Quick Practice (Try mentally)

 What is the output?

print(10 > 5 && 3 < 1);

 What is printed?

int x = 7;

print(x % 2 == 0);

 What type is the result?

var r = 5 / 2;

24

1.9. if / else conditions in Dart

 Basic if Statement

Executes code only if the condition is true.

void main() {

 int age = 20;

 if (age >= 18) {

 print("Adult");

 }

}

 Condition must be bool (no 0/1 like C).

 if – else

Two paths: true or false

void main() {

 int marks = 45;

 if (marks >= 50) {

 print("Pass");

 } else {

 print("Fail");

 }

}

25

 if – else if – else (Multiple Conditions)

Checked top → bottom (first true block runs).

void main() {

 int score = 82;

 if (score >= 90) {

 print("A");

 } else if (score >= 75) {

 print("B");

 } else if (score >= 50) {

 print("C");

 } else {

 print("F");

 }

}

 Order matters!

 Nested if Statements

if inside another if.

void main() {

 int age = 22;

 bool hasID = true;

 if (age >= 18) {

 if (hasID) {

 print("Allowed");

 } else {

 print("ID required");

 }

 } else {

 print("Underage");

 }

}

 Logical Conditions in if

• AND (&&)

26

if (age >= 18 && hasID) {

 print("Access granted");

}

• OR (||)

if (age < 12 || age > 60) {

 print("Discount");

}

• NOT (!)

if (!isLoggedIn) {

 print("Please log in");

}

 if with Comparison Operators

int x = 10;

if (x == 10) {

 print("Equal");

}

if (x != 5) {

 print("Not five");

}

 Ternary Operator (condition ? expr1 : expr2)

Short if–else expression.

int age = 16;

String result = age >= 18 ? "Adult" : "Minor";

print(result);

 Must return a value.

 if as an Expression (Dart-style)

27

String grade;

int marks = 70;

grade = marks >= 50 ? "Pass" : "Fail";

 Common Mistakes (Exam Traps)

• Using = instead of ==

if (a = 5) {} // ERROR

• Non-boolean condition

if (1) {} // ERROR

• Missing braces (logic bug)

if (x > 0)

 print("Positive");

 print("Always runs"); //

 Correct:

if (x > 0) {

 print("Positive");

}

 Real-World Example (Complete)

void main() {

 int balance = 500;

 int withdraw = 300;

 if (withdraw <= balance) {

 balance -= withdraw;

 print("Withdraw successful");

 } else {

 print("Insufficient balance");

 }

}

28

 Practice (Try before scrolling)

• Q1

int x = 15;

if (x % 3 == 0 && x % 5 == 0) {

 print("FizzBuzz");

} else if (x % 3 == 0) {

 print("Fizz");

} else if (x % 5 == 0) {

 print("Buzz");

}

• Q2

What is printed?

int a = 5;

if (a > 10) {

 print("A");

} else if (a > 3) {

 print("B");

} else {

 print("C");

}

29

Dart functions

 What is a Function in Dart?

A function is a reusable block of code that:

• may take parameters

• may return a value

returnType functionName(parameters) {

 // body

}

 Basic Function (No parameters, no return)

void greet() {

 print("Hello Dart");

}

void main() {

 greet();

}

 void → returns nothing.

 Function with Parameters

void printSum(int a, int b) {

 print(a + b);

}

void main() {

 printSum(3, 4);

}

30

 Function with Return Value

int add(int a, int b) {

 return a + b;

}

void main() {

 int result = add(5, 6);

 print(result);

}

 Arrow (Short) Functions =>

For single-expression functions.

int square(int x) => x * x;

void main() {

 print(square(4)); // 16

}

 Optional Positional Parameters []

Parameters that may be omitted.

void showInfo(String name, [int? age]) {

 print("Name: $name");

 print("Age: ${age ?? 'Not provided'}");

}

void main() {

 showInfo("Ali");

 showInfo("Ali", 20);

}

 Optional params must be nullable or have defaults.

31

 Optional Named Parameters { }

Very common in Dart & Flutter.

void registerUser({String? name, int? age}) {

 print("Name: $name, Age: $age");

}

void main() {

 registerUser(name: "Sara", age: 22);

}

 Required Named Parameters

void login({required String username, required String password}) {

 print("User: $username");

}

void main() {

 login(username: "admin", password: "1234");

}

 Default Parameter Values

void greet(String name, {String country = "Iraq"}) {

 print("Hello $name from $country");

}

void main() {

 greet("Sipan");

 greet("Sipan", country: "Turkey");

}

 Return Multiple Values (Using Records – Dart 3)

(int, int) minMax(int a, int b) {

 return (a < b ? a : b, a > b ? a : b);

}

void main() {

 var (min, max) = minMax(3, 7);

 print("Min: $min, Max: $max");

}

32

 Anonymous (Lambda) Functions

Functions without names.

void main() {

 var add = (int a, int b) {

 return a + b;

 };

 print(add(3, 4));

}

Arrow lambda:

var multiply = (int a, int b) => a * b;

 Functions as Parameters (Higher-Order)

void calculate(int a, int b, int Function(int, int) operation) {

 print(operation(a, b));

}

void main() {

 calculate(5, 3, (x, y) => x + y);

 calculate(5, 3, (x, y) => x * y);

}

 Recursive Functions

Function calling itself.

int factorial(int n) {

 if (n == 0) return 1;

 return n * factorial(n - 1);

}

void main() {

 print(factorial(5)); // 120

}

33

 Common Exam Mistakes

• Missing return

int sum(int a, int b) {

 a + b; // ERROR

}

 Correct:

return a + b;

• Wrong parameter order

login("admin", password: "123"); // ERROR

 Practice Exercises (Try!)

• Exercise 1

Write a function that returns the largest of 3 numbers.

• Exercise 2

Write a function that checks whether a number is prime.

• Exercise 3

Convert this function to an arrow function:

int cube(int x) {

 return x * x * x;

}

