
1 

 

 

 

 

Zakho Technical College  

Department of Computer Information System 

 

Data Structures and Algorithms  

1. Introduction to Data Structures and Algorithms 
 

 

 

 

Lecturers: 

 Sipan M. Hameed 

Ahmed Jamil 

www.sipan.dev 

2024-2025 

http://www.sipan.dev/


2 

 

 

 

Contents 

 DSA (Data Structures and Algorithms) ....................................... 3 

 different kinds of data structures .............................................. 3 

 Why to Learn DSA? ................................................................... 3 

 What are Algorithms? ............................................................... 3 

 Data Structures together with Algorithms ................................. 4 

 Where is Data Structures and Algorithms Needed? ................... 4 

 Theory and Terminology ........................................................... 5 

 Key Considerations when choosing a Data Structure ................. 6 

 Types of Data Structures ........................................................... 7 

 Types of algorithms .................................................................. 7 

 Choosing the Right Algorithm ................................................... 9 

 Practical Examples: ................................................................. 10 

 Array ...................................................................................... 10 

 Basic Array Operations ........................................................... 15 

 



3 

 

 

 

 DSA (Data Structures and Algorithms)  

A data structure is a way to store data.is the study of organizing data efficiently using data 

structures like arrays, stacks, and trees, paired with step-by-step procedures (or algorithms) to 

solve problems effectively. Data structures manage how data is stored and accessed, while 

algorithms focus on processing this data. 

 different kinds of data structures 

in Computer Science there are two different kinds of data structures. 

Primitive Data Structures are basic data structures provided by programming languages to 

represent single values, such as integers, floating-point numbers, characters, and Booleans. 

Abstract Data Structures are higher-level data structures that are built using primitive data types 

and provide more complex and specialized operations. Some common examples of abstract data 

structures include arrays, linked lists, stacks, queues, trees, and graphs. 

 Why to Learn DSA? 

• Learning DSA boosts your problem-solving abilities and make you a stronger programmer. 

• DSA is foundation for almost every software like GPS, Search Engines, AI ChatBots, 

Gaming Apps, Databases, Web Applications, etc 

• Top Companies like Google, Microsoft, Amazon, Apple, Meta and many other heavily 

focus on DSA in interviews.  

 What are Algorithms? 

An algorithm is a set of step-by-step instructions to solve a given problem or achieve a specific goal. 

When we talk about algorithms in Computer Science, the step-by-step instructions are written in a 

programming language, an algorithm uses data structures. 

Algorithms are fundamental to computer programming as they provide step-by-step instructions 

for executing tasks. An efficient algorithm can help us to find the solution we are looking for, and 

to transform a slow program into a faster one. 

By studying algorithms, developers can write better programs. 

Algorithm examples: 

• Finding the fastest route in a GPS navigation system 

• Navigating an airplane or a car (cruise control) 

• Finding what users search for (search engine) 

• Sorting, for example sorting movies by rating 



4 

 

 

 

 Data Structures together with Algorithms 

Data structures and algorithms (DSA) go hand in hand. A data structure is not worth much if you 

cannot search through it or manipulate it efficiently using algorithms, and the algorithms in this 

tutorial are not worth much without a data structure to work on. 

DSA is about finding efficient ways to store and retrieve data, to perform operations on data, and to 

solve specific problems. 

By understanding DSA, you can: 

• Decide which data structure or algorithm is best for a given situation. 

• Make programs that run faster or use less memory. 

• Understand how to approach complex problems and solve them in a systematic way. 

 Where is Data Structures and Algorithms Needed? 

Data Structures and Algorithms (DSA) are used in virtually every software system, from operating 

systems to web applications: 

• For managing large amounts of data, such as in a social network or a search engine. 

• For scheduling tasks, to decide which task a computer should do first. 

• For planning routes, like in a GPS system to find the shortest path from A to B. 

• For optimizing processes, such as arranging tasks so they can be completed as quickly as 

possible. 

• For solving complex problems: From finding the best way to pack a truck to making a 

computer 'learn' from data. 

DSA is fundamental in nearly every part of the software world: 

• Operating Systems 

• Database Systems 

• Web Applications 

• Machine Learning 

• Video Games 

• Cryptographic Systems 

• Data Analysis 

• Search Engines 

 

 

 

 



5 

 

 

 

 Theory and Terminology 

As we go along in this tutorial, new theoretical concepts and terminology (new words) will be 

needed so that we can better understand the data structures and algorithms we will be working on. 

These new words and concepts will be introduced and explained properly when they are needed, 

but here is a list of some key terms, just to get an overview of what is coming: 

Term Description 

Algorithm A set of step-by-step instructions to solve a specific problem. 

Data Structure A way of organizing data so it can be used efficiently. Common data 

structures include arrays, linked lists, and binary trees. 

Time 

Complexity 

A measure of the amount of time an algorithm takes to run, depending on the 

amount of data the algorithm is working on. 

Space 

Complexity 

A measure of the amount of memory an algorithm uses, depending on the 

amount of data the algorithm is working on. 

Big O Notation A mathematical notation that describes the limiting behavior of a function 

when the argument tends towards a particular value or infinity. Used in this 

tutorial to describe the time complexity of an algorithm. 

Recursion A programming technique where a function calls itself. 

Divide and 

Conquer 

A method of solving complex problems by breaking them into smaller, more 

manageable sub-problems, solving the sub-problems, and combining the 

solutions. Recursion is often used when using this method in an algorithm. 

Brute Force A simple and straight forward way an algorithm can work by simply trying 

all possible solutions and then choosing the best one. 

 

 

 

 

 

 

 



6 

 

 

 

 Key Considerations when choosing a Data Structure  

In the realm of computer science, data is the lifeblood of any program. But raw, unorganized data 

is of limited use. We need ways to organize and manage this data efficiently so that we can 

process it meaningfully. This is where data structures come into play. 

A data structure is a specialized way of organizing, storing, and retrieving data in a computer's 

memory. It's a blueprint for how data is arranged, allowing for efficient access and manipulation. 

Think of it like choosing the right container for your belongings. You wouldn't store books in a 

shoe box or shoes in a bookshelf. Similarly, different data structures are suited for different types 

of data and operations. 

Key Considerations when choosing a Data Structure: 

• Type of data: Is it a collection of numbers, text, or more complex objects? 

• Operations: What kind of operations will be performed on the data (e.g., searching, 

sorting, inserting, deleting)? 

• Efficiency: How quickly do these operations need to be performed? 

• Memory usage: How much memory is required to store the data? 

1.3 The Importance of Data Structures and Algorithms 

Data structures and algorithms are fundamental to computer science. They are the building blocks 

of virtually every software application. Here's why they are so important: 

• Efficiency: Choosing the right data structure and algorithm can dramatically improve the 

performance of a program. Efficient algorithms can reduce execution time and memory 

usage, leading to faster and more responsive applications. 

• Organization: Data structures provide a way to organize and manage large amounts of 

data, making it easier to search, retrieve, and process. 

• Problem Solving: DSA provides a framework for thinking about and solving problems 

computationally. It equips you with the tools to analyze problems, design solutions, and 

implement them effectively. 

• Scalability: Well-designed data structures and algorithms are essential for building 

scalable applications that can handle increasing amounts of data and traffic. 

• Software Development: A strong understanding of DSA is crucial for any software 

developer. It enables you to write better code, design efficient systems, and solve complex 

problems. 

• Job Interviews: DSA is a common topic in technical interviews for software engineering 

roles. Demonstrating proficiency in DSA is often a requirement for landing a job in the 

tech industry. 

 

  



7 

 

 

 

 Types of Data Structures 

Data structures can be broadly classified into various categories, including: 

• Linear Data Structures: Data elements are arranged in a sequential or linear fashion. 

Examples include: 

o Arrays: A fixed-size collection of elements of the same data type. 

o Linked Lists: A dynamic collection of elements, where each element points to the 

next. 

o Stacks: A LIFO (Last-In, First-Out) data structure. 

o Queues: A FIFO (First-In, First-Out) data structure. 

• Non-Linear Data Structures: Data elements are not arranged sequentially. Examples 

include: 

o Trees: Hierarchical data structures with a root node and child nodes. 

o Graphs: A collection of vertices (nodes) and edges that connect them. 

o Hash Tables: Data structures that use a hash function to map keys to values. 

 

 Types of algorithms 

Algorithms are like recipes for solving problems with a computer. They are step-by-step 

instructions that tell a computer how to perform a task. Just like there are many different ways to 

cook a meal, there are many different types of algorithms, each with its own strengths and 

weaknesses. Here's a breakdown of some common algorithm types: 

 

1. Sorting Algorithms 

Examples:  

• Bubble Sort: Simple but inefficient for large datasets. 

• Insertion Sort: Efficient for small or nearly sorted lists. 

• Merge Sort: Efficient for large datasets, uses a "divide and conquer" strategy. 

• Quick Sort: Also efficient for large datasets, uses a "divide and conquer" strategy. 

 

2. Searching Algorithms 

These algorithms find a specific item in a dataset. 

• Examples:  

o Linear Search: Checks each item one by one (like looking for a book in a 

randomly organized library). 

o Binary Search: Efficient for sorted datasets, repeatedly divides the search space in 

half (like using an index to find a word in a dictionary). 

3. Graph Algorithms 

These algorithms work with data represented as a network of nodes (vertices) and connections 

(edges). 



8 

 

 

 

• Examples:  

o Breadth-First Search (BFS): Explores the graph layer by layer (like exploring a 

maze by trying all paths at the same time). 

o Depth-First Search (DFS): Explores the graph by going as deep as possible along 

each branch before backtracking (like exploring a maze by following one path until 

you hit a dead end, then going back). 

o Dijkstra's Algorithm: Finds the shortest path between two nodes in a graph (like 

finding the fastest route on a map). 

4. Dynamic Programming Algorithms 

These algorithms solve problems by breaking them down into smaller overlapping subproblems, 

solving each subproblem only once, and storing their solutions to avoid redundant computations. 

• Example: Calculating the Fibonacci sequence efficiently. 

5. Greedy Algorithms 

These algorithms make locally optimal choices at each step in the hope of finding a globally 

optimal solution. They don't always guarantee the best solution, but they are often efficient and 

provide good approximations. 

• Example: Making change with the fewest number of coins. 

6. Divide and Conquer Algorithms 

• These algorithms solve problems by recursively breaking them down into smaller 

subproblems, solving each subproblem independently, and combining the solutions to 

solve the original problem. 

• Example: Merge Sort (sorting algorithm). 

7. Backtracking Algorithms 

These algorithms explore potential solutions by trying different options and undoing them 

(backtracking) if they don't lead to a solution. 

• Example: Solving a Sudoku puzzle. 

8. Brute-Force Algorithms 

These algorithms try all possible solutions until the correct one is found. They are simple but can 

be inefficient for large problem spaces. 

• Example: Trying every possible password to crack a code. 

9. Randomized Algorithms 

These algorithms use randomness in their steps. They may not always give the exact solution, but 

they can provide good approximations with a high probability. 

• Example: QuickSort (sorting algorithm). 



9 

 

 

 

10. Machine Learning Algorithms 

These algorithms learn patterns from data and use those patterns to make predictions or decisions. 

• Examples:  

o Linear Regression: Predicting a value based on a linear relationship with other 

values. 

o Decision Trees: Making decisions based on a tree-like structure of rules. 

o Neural Networks: Complex algorithms inspired by the human brain, used for tasks 

like image recognition and natural language processing. 

 Choosing the Right Algorithm 

The choice of algorithm depends on several factors, including: 

• The nature of the problem: What kind of problem are you trying to solve? 

• The size of the input: How much data will the algorithm be processing? 

• The desired level of accuracy: Do you need an exact solution or an approximation? 

• The available resources: How much time and memory do you have available? 

Understanding the different types of algorithms and their characteristics will help you choose the 

most appropriate one for your specific needs. 

 

 

 

  



10 

 

 

 

 Practical Examples: 

 Array 

 

1. Introduction to Arrays 

Arrays store multiple elements of the same type in contiguous memory. They have a fixed size once 

created. 

 

2. Single-Dimensional Arrays 

Declaration & Initialization: 

 

// Declaration 

int[] numbers1 = new int[5]; // 5 elements (0-4), initialized to 0 

int[] numbers2 = { 1, 2, 3, 4, 5 }; // Implicit initialization 

 

// Accessing elements 

numbers1[0] = 10; // First element 

Console.WriteLine(numbers2[3]); // Output: 4 

Looping: 

// For loop 

for (int i = 0; i < numbers2.Length; i++) 

{ 

    Console.WriteLine(numbers2[i]); 

} 

// Foreach loop 

foreach (int num in numbers2) 

{ 

    Console.WriteLine(num); 

} 

 



11 

 

 

 

3. Multidimensional Arrays (Rectangular) 

2D Array Example: 

 

int[,] matrix = new int[2, 3] { { 1, 2, 3 }, { 4, 5, 6 } }; 

 

// Accessing 

Console.WriteLine(matrix[1, 2]); // Output: 6 

 

// Looping 

for (int i = 0; i < matrix.GetLength(0); i++) 

{ 

    for (int j = 0; j < matrix.GetLength(1); j++) 

    { 

        Console.Write(matrix[i, j] + " "); 

    } 

    Console.WriteLine(); 

} 

4. Jagged Arrays (Array of Arrays) 

int[][] jagged = new int[3][]; 

jagged[0] = new int[] { 1, 2 }; 

jagged[1] = new int[] { 3 }; 

jagged[2] = new int[] { 4, 5, 6 }; 

 

// Accessing 

Console.WriteLine(jagged[2][1]); // Output: 5 

 

 



12 

 

 

 

// Looping 

foreach (int[] arr in jagged) 

{ 

    foreach (int num in arr) 

    { 

        Console.Write(num + " "); 

    } 

    Console.WriteLine(); 

} 

5. Common Methods & Properties 

Length & GetLength: 

int[] arr = { 1, 2, 3 }; 

Console.WriteLine(arr.Length); // 3 (total elements) 

 

int[,] grid = new int[2, 4]; 

Console.WriteLine(grid.GetLength(0)); // 2 (rows) 

Console.WriteLine(grid.GetLength(1)); // 4 (columns) 

Sorting & Reversing: 

 

Array.Sort(arr); // Sorts in ascending order 

Array.Reverse(arr); // Reverses element order 

 

 

Copying: 

 

int[] copy1 = (int[])arr.Clone(); // Shallow copy 

int[] copy2 = new int[3]; 

arr.CopyTo(copy2, 0); // Copies to target array 



13 

 

 

 

6. Working with Arrays 

Passing to Methods: 

 

static void SquareElements(int[] arr) 

{ 

    for (int i = 0; i < arr.Length; i++) 

    { 

        arr[i] *= arr[i]; 

    } 

} 

 

// Usage: 

int[] nums = { 2, 3, 4 }; 

SquareElements(nums); // Modifies original array 

7. Default Values & Initialization 

Value types: 0 for numeric, false for bool 

Reference types: null 

bool[] bools = new bool[3]; // [false, false, false] 

string[] names = new string[2]; // [null, null] 

Fixed size: Can't dynamically resize (use List<T> for dynamic collections) 

 

8. Resizing Arrays 

Use Array.Resize (creates a new array): 

 

int[] numbers = { 1, 2, 3 }; 

Array.Resize(ref numbers, 5); // New size: 5 

// numbers becomes [1, 2, 3, 0, 0] 



14 

 

 

 

9. Conclusion 

Use single-dimensional arrays for simple lists. 

Multidimensional arrays for matrices/grids. 

Jagged arrays for variable-length rows. 

Prefer List<T> when dynamic resizing is needed. 

 

Final Tips: 

Initialize jagged array sub-arrays before use. 

Use foreach for read-only iteration and for for modification. 

 

  



15 

 

 

 

 Basic Array Operations 

Example 1: Full lifecycle of an array 

using System; 

 

namespace ConsoleApp14 

{ 

    internal class Program 

    { 

        static void Main(string[] args) 

        { 

            // Declaration and initialization 

            string[] fruits = new string[4] {  

"Date","Banana","Cherry","Apple"   }; 

 

            // Modification 

            fruits[2] = "Cantaloupe"; // Change 3rd element 

            Array.Resize(ref fruits, 5); // Add extra capacity 

            fruits[4] = "Elderberry"; 

 

            // Iteration and output 

            Console.WriteLine("Fruits Collection:"); 

            foreach (string fruit in fruits) 

            { 

                Console.WriteLine($"- {fruit}"); 

            } 

 

            // Search operation 

            int index = Array.IndexOf(fruits, "Date"); 

            Console.WriteLine($"Index of 'Date': {index}"); // Output: 3 

 

            // Sorting 

            Array.Sort(fruits); 

            Console.WriteLine("\nSorted Fruits:"); 

            Console.WriteLine(string.Join(", ", fruits)); 

            // Apple, Banana, Cantaloupe, Date, Elderberry 

 

        } 

    } 

} 

 

 

 



16 

 

 

 

2. Working with User Input: 

using System; 
 
namespace ConsoleApp14 
{ 
    internal class Program 
    { 
        static void Main(string[] args) 
        { 
            Console.WriteLine("Enter the number of scores:"); 
            int numScores = int.Parse(Console.ReadLine());  
            // Get the number of scores from the user 
 
            int[] scores = new int[numScores]; 
            // Create an array of the specified size 
 
            for (int i = 0; i < numScores; i++) 
            { 
                Console.WriteLine($"Enter score {i + 1}:"); 
                scores[i] = int.Parse(Console.ReadLine()); 
                // Get each score from the user 
            } 
 
            Console.WriteLine("\nScores entered:"); 
            for (int i = 0; i < numScores; i++) 
            { 
                Console.WriteLine($"Score {i + 1}: {scores[i]}"); 
            } 
 
            // Calculate the average: 
            int sum = 0; 
            for (int i = 0; i < numScores; i++) 
            { 
                sum += scores[i]; 
            } 
            double average = (double)sum / numScores; 
            // Important: Cast to double for accurate division 
            Console.WriteLine($"Average score: {average}"); 
 
 
 
        } 
    } 
} 

 

 

 

 



17 

 

 

 

 

3. Searching an Array: 

using System; 
 
namespace ConsoleApp14 
{ 
    internal class Program 
    { 
        static void Main(string[] args) 
        { 
            string[] names = { "Alice", "Bob", "Charlie", "David", "Eve" }; 
 
            Console.WriteLine("Enter a name to search for:"); 
            string searchName = Console.ReadLine(); 
 
            // Linear search (simple but not efficient for large arrays): 
            bool found = false; 
            for (int i = 0; i < names.Length; i++) 
            { 
                if (names[i].Equals(searchName, 
StringComparison.OrdinalIgnoreCase)) 
                { // Case-insensitive comparison 
                    Console.WriteLine($"{searchName} found at index {i}"); 
                    found = true; 
                    break; // Exit the loop once found 
                } 
            } 
 
            if (!found) 
            { 
                Console.WriteLine($"{searchName} not found."); 
            } 
 
            // Using Array.IndexOf (more concise for simple searches): 
            int index = Array.IndexOf(names, searchName); 
            if (index != -1) 
            { 
                Console.WriteLine($"{searchName} found at index {index}"); 
            } 
            else 
            { 
                Console.WriteLine($"{searchName} not found."); 
            } 
 
        } 
    } 
} 


